

ABSOLUTER WINKELCODIERER MIT DEVICE NET INTERFACE BENUTZERHANDBUCH

Impressum

FRABA POSITAL GmbH Schanzenstraße 35 D-51063 Köln Telefon +49 (0) 221 96213-0 Telefax +49 (0) 221 96213-20

Urheberrechtschutz

Für diese Dokumentation beansprucht die Firma FRABA POSITAL GmbH Urheber-rechtschutz.

Diese Dokumentation darf ohne vorherige schriftliche Genehmigung der Firma FRABA POSITAL GmbH weder abgeändert, er-weitert, vervielfältigt noch an Dritte weitergegeben werden. Dieses Handbuch wurde mit aller Sorgfalt verfasst. Da Fehler trotzdem nicht ganz auszu-schließen sind, weisen wir daraufhin, dass FRABA POSITAL GmbH weder eine Garantie noch die juristische Verantwortung oder irgendeine Haftung für Folgen, die auf fehlerhafte Angaben zurückgehen, übernehmen kann.

Änderungsvorbehalt

Technische Änderungen der in dem vorliegenden Dokument enthaltenen technischen Informationen, die aus dem stetigen Bestreben zur Verbesserung unserer Produkte resultieren, behalten wir uns jederzeit vor.

Verzicht auf Garantie

FRABA POSITAL GmbH übernimmt keine Garantie in Bezug auf das gesamte Handbuch, weder stillschweigend noch ausdrücklich, und haftet nicht für direkte oder indirekte Schäden.

Dokumenteninformation

Dateiname:	UMD-OCD-D.DOC
Ausgabestand:	21.07.2005
Versionsnummer:	1.2
Verfasser:	KMA/EIO

Service-Telefon

Für technische Unterstützung, Rückfragen und Anregungen zur Verbesserung unserer Produkte und Dokumentationen haben wir jederzeit ein offenes Ohr für Sie. Telefon +49 (0) 221-96213-0.

INHALT

1 Finlaituna	
1. Einieitung	4
1.1 Control and Information Protocol (CIP).	5
2. Datenübertragung	7
2.1. Das Objektverzeichnis	7
2.2 Definition der CAN-ID	8
3. Programmierbare Parameter	9
3.1 Encoderparameter	9
3.1.1. Betriebsparameter	9
3.1.2. Auflösung pro Umdrehung:	9
3.1.3. Gesamtauflösung	10
3.1.4. Presetwert	10
3.1.5. MAC-ID	11
3.1.6. Baudrate	11
4. Betriebsarten	12
4.1. Polled Mode	12
4.2. Change of State Mode	14
4.3. Speicherübernahme	16
5. Prozess-Istwert Übertragung	16
5. Prozess-Istwert Übertragung	16 17
5. Prozess-Istwert Übertragung 6. Installation 6.1 Elektrischer Anschluss	16 17 17
 5. Prozess-Istwert Übertragung 6. Installation 6.1 Elektrischer Anschluss 6.2 Einstellungen in der Anschlusshaube 	16 17 17 18
 5. Prozess-Istwert Übertragung 6. Installation 6.1 Elektrischer Anschluss 6.2. Einstellungen in der Anschlusshaube 6.3 Kabel 	16 17 17 18 18
 5. Prozess-Istwert Übertragung 6. Installation 6.1 Elektrischer Anschluss 6.2. Einstellungen in der Anschlusshaube 6.3 Kabel 6.3 Stecker 	16 17 17 18 18 18
 5. Prozess-Istwert Übertragung 6. Installation 6.1 Elektrischer Anschluss 6.2. Einstellungen in der Anschlusshaube 6.3 Kabel 6.3 Stecker 7. Inbetriebnahme 	16 17 17 18 18 18 19
 5. Prozess-Istwert Übertragung 6. Installation 6.1 Elektrischer Anschluss 6.2. Einstellungen in der Anschlusshaube 6.3 Kabel 6.3 Stecker 7. Inbetriebnahme 7.1 Betriebszustand 	16 17 17 18 18 18 19 19
 5. Prozess-Istwert Übertragung 6. Installation 6.1 Elektrischer Anschluss 6.2. Einstellungen in der Anschlusshaube 6.3 Kabel 6.3 Stecker 7. Inbetriebnahme 7.1. Betriebszustand 7.2. Programmierung 	16 17 17 18 18 18 19 19 19
 5. Prozess-Istwert Übertragung 6. Installation 6.1 Elektrischer Anschluss 6.2. Einstellungen in der Anschlusshaube 6.3 Kabel 6.3 Stecker 7. Inbetriebnahme 7.1. Betriebszustand 7.2. Programmierung 7.2.1. Betriebsparameter 	16 17 17 18 18 18 19 19 19 19 19
 5. Prozess-Istwert Übertragung 6. Installation 6.1 Elektrischer Anschluss 6.2. Einstellungen in der Anschlusshaube 6.3 Kabel 6.3 Stecker 7. Inbetriebnahme 7.1. Betriebszustand 7.2. Programmierung 7.2.1. Betriebsparameter 7.2.2. Auflösung pro Umdrehung 	16 17 17 18 18 18 19 19 19 19 19 19
 5. Prozess-Istwert Übertragung 6. Installation 6.1 Elektrischer Anschluss 6.2. Einstellungen in der Anschlusshaube 6.3 Kabel 6.3 Stecker 7. Inbetriebnahme 7.1. Betriebszustand 7.2. Programmierung 7.2.1. Betriebsparameter 7.2.2. Auflösung pro Umdrehung 7.2.3. Gesamtauflösung 	16 17 17 18 18 18 19 19 19 19 19 19 19 19
 5. Prozess-Istwert Übertragung 6. Installation 6.1 Elektrischer Anschluss	16 17 17 18 18 18 19 19 19 19 19 19 19 19
 5. Prozess-Istwert Übertragung 6. Installation 6.1 Elektrischer Anschluss	16 17 17 18 18 18 19 19 19 19 19 19 19 19 19 12
 5. Prozess-Istwert Übertragung 6. Installation 6.1 Elektrischer Anschluss	16 17 17 18 18 18 18 19 19 19 19 19 19 20 21 22 22
 5. Prozess-Istwert Übertragung 6. Installation 6.1 Elektrischer Anschluss	16 17 17 18 18 18 18 19 19 19 19 19 19 19 19 20 21 22 22 22
 5. Prozess-Istwert Übertragung 6. Installation 6.1 Elektrischer Anschluss	16 17 17 18 18 18 19 19 19 19 19 19 19 19 19 19 21 21 22 23 24
 5. Prozess-Istwert Übertragung 6. Installation 6.1 Elektrischer Anschluss	16 17 17 18 18 18 18 19 19 19 19 19 19 19 19 20 21 22 22 22 23 24 24
 5. Prozess-Istwert Übertragung 6. Installation 6.1 Elektrischer Anschluss	16 17 17 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19 21 22 22 23 24 24 24
 5. Prozess-Istwert Übertragung 6. Installation 6.1 Elektrischer Anschluss	16 17 17 18 18 18 18 19 19 19 19 19 19 19 20 21 22 23 24 24 26 28

9. Technische Daten	31
9.1. Elektrische Daten	31
9.2 Mechanische Daten	31
Mechanische Zeichnungen	33
Synchroflansch (S)	33
Klemmflansch (C)	33
Hohlwelle (B)	34
Quadratflansch (Q)	35
Synchroflansch (S)	35
Synchroflansch (S)	36
Klemmflansch (C10)	37
Synchroflansch (S), 5 poliger Stecker	38
Sacklochhohlwelle (B)	39
Montagehinweise	39
Heavy Duty Ausführung	40
Hauptmerkmale	40
Heavy Duty Ausführung mit Vollwelle	41
Heavy Duty Ausführung mit Hohlwelle	41
Ausführungen / Bestellbezeichnung	42
Anschlusshauben	43
Zubehör und Dokumentation	43

1. Einleitung

Absolute Winkelcodierer liefern für jede Winkelstellung einen absoluten Schrittwert. Alle diese Werte sind als Codemuster auf einer oder mehrerer Codescheiben abgebildet. Die Codescheiben werden mittels einer Infrarot-LED durchleuchtet und das erhaltene Bitmuster durch ein Opto-Array detektiert. Die gewonnenen Signale werden elektronisch verstärkt und zur Verarbeitung an das Interface weitergeleitet.

Der Absolutwertgeber eine maximale hat Grundauflösung von 65536 Schritten pro Umdrehung (16 Bit). In der Multi-Turn Ausführung werden bis zu 16384 Umdrehungen (14 Bit) aufgelöst. Daraus ergibt sich eine Gesamtauflösung von maximal 30 Bit = 1.073.741.824 Schritten. Die Standard Single-Turn Ausführung hat 12 Bit, die Standard Multi-Turn Ausführung 24 Bit.

Die integrierte CAN-Bus Schnittstelle des Absolutwertgebers unterstützt alle Device Net Funktionen.

So können folgende Betriebsarten programmiert werden, die wahlweise zu bzw. abgeschaltet werden können:

- Polled Mode
- Change of State Mode

Zusätzlich lassen sich folgende Funktionen des Absolutwertgebers über den CAN-Bus parametrieren:

- Drehrichtung (Complement)
- Auflösung pro Umdrehung
- Gesamtauflösung
- Presetwert
- Baudrate
- MAC-ID

Ein universeller Einsatz des Absolutwertgebers mit Device Net Interface ist damit gewährleistet.

Pneumatic AC Other Semi Position Devices Valve Drives Controllers Profiles User COMMON Layer Application Object Library Application CIP Messaging Layer Explicit, I/O, Routing DeviceNet Data Link Application & Laver Data Link Layer [CAN] DeviceNet Physical Physical Layer Layer

1.1 Control and Information Protocol (CIP)

DeviceNet-Spezifikation Die definiert den Application Layer und den Physical Layer. Der Data Link Layer basiert auf der CAN-Spezifikation. Für die optimale Industriesteuerung werden zwei verschiedene Nachrichtentypen zur Verfügung gestellt. I/O Nachrichten (Implicit Messaging) und explizite Nachrichten (Explicit Messaging). Mit Implicit Messaging werden I/O Daten in Echtzeit ausgetauscht und mit Explicit Messaging werden Daten zur Konfiguration eines Gerätes ausgetauscht. CIP (Common Industrial Protocol) stellt dem Anwender vier wesentliche Funktionalitäten zur Verfügung:

- Einheitliche Steuerungsdienste
- Einheitliche Kommunikationsdienste
- Einheitliche Verteilung von Nachrichten
- Gemeinsame Wissensbasis

1.2 Objektmodell

DeviceNet beschreibt alle Daten und Funktionen eines Gerätes anhand eines Objektmodells. Mit Hilfe dieser objektorientierten Beschreibung kann ein Gerät mit einzelnen Objekten vollständig definiert werden. Ein Objekt ist bestimmt durch die Zusammenfassung von zugehörigen Attributen (z.B. Prozessdaten), seine nach außen bereitgestellten Funktionen (Lese- oder Schreibzugriff auf ein einzelnes Attribut) sowie durch sein definiertes Verhalten.

DeviceNet unterscheidet zwischen drei Arten von Objekten:

• Kommunikationsobjekte

Definieren die über DeviceNet ausgetauschen Nachrichten und werden als Connection Objects bezeichnet. (DeviceNet Object, Message Router Object, Connection Object, Acknowledge Handler Object)

- Systemobjekte Definieren allgemeine DeviceNet-spezifische Daten und Funktionen. (Identity Object, Parameter Object)
- Applikationsspezifische Objekte Definieren gerätespezifische Daten und Funktionen. (Application Object, Assembly Object)

2. Datenübertragung

Die Datenübertragung in Device Net erfolgt über Nachrichtentelegramme. Grundsätzlich lassen sich die Telegramme schematisch in CAN-ID und 8 Folgebytes aufteilen:

COB-ID	Message Header	Message Body
11 Bit	1 Byte	7 Byte

2.1. Das Objektverzeichnis

Instanz Attribute des Position Sensor Objekts

Class Code: 23 hex

Attribut ID	Zugriff	Name	Datenlänge	Beschreibung
1 hex	Get	Anzahl der Attribute	USINT	Anzahl der unterstützten Attribute
2 hex	Get	Attribute	Array of USINT	Liste unterstützter Attribute
3 hex	Get	Positionswert	DINT	Ausgabe der aktuellen Position
0B hex	Get / Set	Drehrichtungskontrolle	Boolean	Steuert die Codefolge
				Steigend / fallend
2C hex	Get / Set	Auflösung pro Umdrehung	INT	Auflösung für eine Umdrehung
2D hex	Get / Set	Gesamtauflösung	DINT	Gesamt eindeutig darstellbare
				Auflösung
2E hex	Get / Set	Preset Wert	DINT	Zuordnung Positionswert
6E hex	Get / Set	Baudrate		Einstellung der Baudrate
6F hex	Get / Set	MAC ID		Einstellung der MAC ID

Get / Set:

Lesen, Schreiben

2.2 Definition der CAN-ID

DeviceNet basiert auf dem Standard-CAN Protokoll und verwendet einen 11 Bit (2048 Nachrichten unterscheitbar) Nachrichtenidentifier. Zur Kennzeichnung eines Gerätes oder Knotens in ein DevicaNet Netzwerk reichen 6 Bit aus, da ein Netzwerk auf 64 Teilnehmer begrenzt ist. Diese wir als MAC ID (Geräte- oderKnotenadresse) bezeichnet. Der CAN-Identifier setzt sich aus der Kennung der Message Group, der Message ID innerhalb dieser Gruppe und der MAC ID des gerätes zusammen.

Bei dem Absoluten Drehgeber handelt es sich um einen Group 2 Server. In der unten stehenden Tabelle kann ein user die wichtigsten CAN-ID für eine bestimmte Kommunikationsart einsehen.

10	9	8	7	6	5	4	3	2	1	0	Identity	Hex
											Usage	Range
0	Gro	oup	1		So	urc	e M	AC	ID		GROUP 1 Message	000-3ff
	Me	essa	ge II	D								
0	1	1	0	1	So	urc	e M	AC	ID		Slave's I/O Change of State or Cyclic Message	
0	1	1	1	1	So	urc	e M	AC	ID		Slave's I/O Poll Response or Change of State/Cyclic	
											Acknowledge Message	
1	0	MA	AC I	D				Gro	oup	2	GROUP 2 Messages	400 - 5ff
		Message		ge								
				ID								
1	0	Destination MAC 0		1	0	Master's Change of State or Cyclic Acknowledge						
		ID									Message	
1	0	0 Source MAC ID 0 1 1		1	Slave's Explicit/Unconnected Response Messages							
1	0	0 Destination MAC 1 0		0	0	Master's Explicit Request Message						
	ID											
1	0	De	stin	atic	on	M	AC	1	0	1	Master's I/O Poll Command/Change of State/Cyclic	
		ID			Message							
1	0	De	stin	natio	on	M	AC	1	1	0	Group 2 Only Unconnected Explicit Request Message	
		ID									(reserved)	
1	0	De	stin	natio	on	M	AC	1	1	1	Duplicate MAC ID Check Messages	
		ID										

3. Programmierbare Parameter

3.1 Encoderparameter

3.1.1. Betriebsparameter

Als Betriebsparameter kann die Drehrichtung gewählt werden.

Attribut ID	Defaultwert	Wertebereich	Datenlänge
0b hex	1 hex	0hex - 1hex	Boolean

Der Parameter Drehrichtung (Complement) definiert die Zählrichtung der Ausgabe des Prozess-Istwertes bei Drehung der Welle im

Bit 0 Drehrichtung Ausgabecode CW Steigend

Fallend

3.1.2. Auflösung pro Umdrehung:

CCW

1

0

Der Parameter Auflösung pro Umdrehung wird dazu verwendet, den Encoder so zu programmieren, dass eine gewünschte Anzahl von SchritUhrzeigersinn (CW) oder gegen den Uhrzeigersinn (CCW) bei Sicht auf Welle. Die Zählrichtung wird im Attribut Obhex festgelegt:

ten bezogen auf eine Umdrehung realisiert werden kann.

Attribut ID E	Defaultwert	Wertebereich	Datenlänge
2C hex ((*)	0hex - 2000hex	Unsigned Integer16

(*) siehe: Typenschild Maximale Auflösung bei 24 Bit Ausführung: 1.000 hex 25 Bit Ausführung: 2.000 hex

Wird als Auflösung pro Umdrehung ein Wert größer der Grundauflösung des Absolutwertgebers gewählt, ist der Ausgabecode nicht mehr einschrittig. Es ist daher darauf zu achten, dass die gewünschte Auflösung die hardwareseitige Auflösung des Absolutwertgebers nicht übersteigt.

3.1.3. Gesamtauflösung

Dieser Parameter gibt die gewünschte Anzahl der Messeinheiten der gesamten Verfahrlänge an. Dieser Wert darf die Gesamtauflösung des Absolutwertgebers nicht übersteigen. Diese ist auf dem Typenschild des Absolutwertgebers abzulesen.

Attribut ID	Defaultwert	Wertebereich	Datenlänge
2D hex	(*)	0h - 2.000.000h	Unsigned Integer 32
(*) siehe: Typenschild			

Maximale Gesamtauflösung bei

24 Bit Ausführung: 1.000.000 hex

25 Bit Ausführung: 2.000.000 hex

Folgende Formelbuchstaben werden nachfolgend verwendet:

PGA	Physikalische Gesamtauflösung des	Gesamtauflösung		
	Encoders (siehe Typenschild)	GA = PGA * AU / PAU, wenn AU < PAU		
PAU	Physikalische Auflösung pro	Beispiel: Benutzervorgabe: AU = 2048,		
	Umdrehung (siehe Typenschild)	Encoderwerte: PGA= 24 Bit, PAU = 12 Bit		
GA	Gesamtauflösung (Benutzereingabe)	GA = 16777216 * 2048 / 4096		
AU	Auflösung pro Umdrehung	GA = 8388608		
	(Benutzereingabe)	Wird die Gesamtauflösung des Absolutwertgebers		
		kleiner als die physikalische Gesamtauflösung		
Wenn	die gewünschte Auflösung pro Umdrehung	gewählt, so muss der Parameter Gesamtauflösung		
kleiner	ist als die tatsächliche physikalisch	ein ganzzahliges Vielfaches der physikalischen		

Gesamtauflösung sein.

k = PGA / GA

k = ganze Zahl

kleiner ist als die tatsächliche physikalisch Auflösung des Encoders pro Umdrehung, dann muss die Gesamtauflösung wie folgt eingegeben werden:

3.1.4. Presetwert

Der Presetwert ist der gewünschte Positionswert, der bei einer bestimmten physikalischen Stellung der Achse erreicht sein soll. Über den Parameter Presetwert wird der Positions-Istwert auf den gewünschten Prozess-Istwert gesetzt. Der Presetwert darf den Parameter Gesamtauflösung nicht übersteigen.

Attribut ID	Defaultwert	Wertebereich	Datenlänge
2E hex	0 hex	0hex - Gesamtauflösung	Unsigned Integer 32

3.1.5. MAC-ID

Bei Absoluten Drehgeber ohne Anschlusshaube wird die MAC-ID mittels Explicit Messaging konfiguriert. Bei den FRABA POSITAL DeviceNet Encodern können 64 verschiedene Knoten adressiert werden.

Attribut ID	Defaultwert	Wertebereich	Datenlänge
6F hex	(*)	0hex – 3Fhex	Unsigned Integer8

3.1.6. Baudrate

Bei Absoluten Drehgeber ohne Anschlusshaube wird die Baudrate mittels Explicit Messaging konfiguriert. Die FRABA POSITAL DeviceNet Encoder unterstützen alle DeviceNet Baudraten, die der untenstehenden Tabelle entnommen werden können.

Attribut ID	Defaultwert	Wertebereich	Datenlänge
6E hex	(*)	0hex – 2hex	Unsigned Integer8

Byte	Baudrate
0	125kbaud
1	250kbaud
2	500kbaud

4. Betriebsarten

4.1. Polled Mode

Beim Polled Mode handelt es sich um eine klassische Maste-Slave Kommunikation. Der Master kann mittels der Poll Command Message den aktuellen Positions-Istwret des Absoolutwertgebers abfragen. Der Absolutwertgeber sendet anschließend den Prozess-Istwert mittels einer Poll Response Message an den Master. Zum Einschalten der Polled Mode Betriebsart sind die folgenden Telegramme erforderlich. Ferner wird in dem Beispiel von einer Master MAC ID von 0A hex und einer Slave MAC ID von 03 hex ausgegangen.

Allocate Master / Slave Connection Set

1. Allocate Polling

Byte Offset	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0	Frag [0]	XID	MAC ID							
1	R/R [0]	Service [4B	5]							
	Class ID	[03]								
	Instance I	D [01]								
	Allocation	Choice [03]	e [03]							
	0	0	Allocator M	AC ID						

Definition CAN ID

10	9	8	7	6	5	4	3	2	1	0	Identity						Hex
											Usage						Range
1	0	De	sti	nati	ion	M	AC	1	1	0	Group	2	Only	Unconnected	Explicit	Request	
		ID									Messad	ı) əl	eserve	d)			

Beispiel:

CAN-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
41E	0A	4B	03	01	03	0A

1. Expected_packet_rate der Explicit Message Connection auf 0 setzen:

Definition CAN-ID

10	9	8	7	6	5	4	3	2	1	0	Identity	Hex
											Usage	Range
1	0	De	sti	nati	ion	M	٩C	1	0	0	Master's Explicit Request Message	
		ID										

Delepion							
CAN-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
41C	0A	10	05	01	09	00	00

1. Expected_packet_rate der Polling Connection auf 0 setzen:

Beispiel:

CAN-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
41C	0A	10	05	02	09	00	00

Release Master / Slave Connection Set

Release Polling

Byte Offset	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0	Frag [0]	XID	MAC ID								
1	R/R [0]	Service [4	IC]								
	Class ID [0	3]									
	Instance ID	ID [01]									
	Release Choice [03]										

CAN-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4
41E	0A	4C	03	01	03

4.2. Change of State Mode

Der Absolutwertgeber sendet ohne Aufforderung durch den Host, wenn sich der aktuelle Prozesslstwert geändert hat. Bei einem unveränderten Prozesswert erfolgt keine Übertragung, womit eine Reduzierung der Buslast sichergestellt ist.

Allocate Master / Slave Connection Set

Allocate COS

Byte Offset	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
0	Frag [0]	XID	MAC ID									
1	R/R [0]	Service [4B]]									
	Class ID [0	3]	3]									
	Instance ID	ce ID [01]										
	Allocation (Allocation Choice [51]										
	0	0	Allocator	MAC ID								

Beispiel:

CAN-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
41E	0A	4B	03	01	51	0A

2. Expected_packet_rate der Explicit Message

Connection auf 0 setzen:

Beispiel:

CAN-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
41C	0A	10	05	01	09	00	00

3. Expected_packet_rate der Change of State

Connection auf 0 setzen:

CAN-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
41C	0A	10	05	04	09	00	00

Release Master / Slave Connection Set

Release COS

Byte Offset	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Frag [0]	XID	MAC ID					
1	R/R [0]	Service [4C	ice [4C]					
	Class ID [03]							
	Instance ID [01]							
	Release Choice [51]							

CAN-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4
41E	0A	4C	03	01	51

4.3. Speicherübernahme

Die Einstellungen und Parameter des Absolutwertgebers sind nullspannungssicher in einem Flash-EPROM gespeichert. Da ein Flash-EPROM nach einer begrenzten Anzahl an Schreibzyklen (≈ 1.000) seine Speicherfähigkeit verliert, werden geänderte Parameter vorerst lediglich im Arbeitsspeicher eingetragen. Nach Einstellung und Prüfung aller Parameter können diese in das Flash-EPROM kopiert werden.

Wenn die Speicherung erfolgreich durchgeführt wurde, meldet sich der Encoder mit einem MAC ID check auf dem Bus. Um den Prozesswert abzufragen, muss der Slave erneut allocated werden.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Offset								
0	Frag [0]	XID	MAC ID					
1	R/R [0]	Service [3	ervice [32]					
	Class ID [23]							
	Instance ID [01]							

Beispiel:

(MAC-ID Master: 0A hex, MAC-ID Slave: 03 hex)						
CAN-ID	Byte 0	Byte 1	Byte 2	Byte 3		
41C	0A	32	23	01		

5. Prozess-Istwert Übertragung

Der Prozess-Istwert wird entsprechend dem folgenden Telegramm-Schema übertragen:

CAN-ID	Prozess-Istwert					
11 Bit	Byte 0	Byte 1	Byte 2	Byte 3		
	2^7 to 2^0	2 ¹⁵ to 2 ⁸	2 ²³ to 2 ¹⁶	2 ³¹ to 2 ²⁴		

6. Installation

6.1 Elektrischer Anschluss

Der Winkelcodierer wird über drei Kabel angeschlossen. Die Spannungsversorgung erfolgt über ein zweiadriges Verbindungskabel durch eine PG 9. Die jeweils zweiadrig abgeschirmte Busleitung wird in bzw. aus dem Winkelcodierer über je eine PG 9 hinein- bzw. herausgeführt:

Klemme	Beschreibung
\bot	Masse
+	24 V Versorgungsspannung
-	0 V Versorgungsspannung
CG	CAN Ground
CL	CAN Low
СН	CAN High
CG	CAN Ground
CL	CAN Low
СН	CAN High

In der Anschlußhaube ist ein Widerstand vorgesehen, der bei Bedarf als Leitungs-Abschluß zugeschaltet werden kann. Abschlußwiderstand:

Die Einstellung der Knotennummer erfolgt über 2 Drehschalter in der Anschlußhaube. Mögliche Adressen liegen zwischen 0 und 63, wobei jede nur einmal vorkommen darf. Die Anschlußhaube kann einfach vom Endanwender durch Lösen von zwei Schrauben am Winkelcodierer zur Installation abgenommen werden. Zwei Diagnose LEDs auf der Rückseite der Anschlußhaube zeigen den Betriebszustand des Winkelcodierers an.

DeviceNet Geräte

- BCD-Drehschalter
- Geräteadresse 0...63
- x1 Einstellung der CAN-Knotennummer

:10

Bd Einstellung der Baudrate

6.2. Einstellungen in der Anschlusshaube

Baudrate in kBit/s	BCD-Drehschalter BCD coded rotary switches
125	0
250	1
500	2
125	3
reserved	49

6.3 Kabel

Pin	Signal	Beschreibung	Farbenkennzeichnung
1	V-	GND	Schwarz
2	CAN-L	CAN Bus Signal (dominant low)	Blau
3	CAN-H	CAN Bus Signal (dominant high)	Weiß
4	V+	Externe Spannungversorgung Vcc	Rot

6.3 Stecker

Pin	Signal	Beschreibung	Farbenkennzeichnung
2	V+	Externe Spannungversorgung Vcc	Rot
3	V-	GND	Schwarz
4	CAN-H	CAN Bus Signal (dominant high)	Weiß
5	CAN-L	CAN Bus Signal (dominant low)	Blau

7. Inbetriebnahme

7.1. Betriebszustand

Nach dem Einschalten der Versorgungsspannung meldet sich der Absolutwertgeber mit einem MAC ID Check auf dem Bus:

7.2. Programmierung

Sollen bestimmte Parameter nicht geändert werden, so kann man diese überspringen.

Die im Folgenden angegebenen Zahlen sind grundsätzlich in hexadezimaler Schreibweise angegeben.

Als Beispiel für die CAN ID und MAC ID wird für den Master 0A (hex) und für den Slave 03 (Hex) verwendet. Um eine Unterscheidung zu den fest definierten Einstellungen treffen zu können, sind die beispielhaften Angaben nachfolgend kursiv dargestellt.

7.2.1. Betriebsparameter

Master an Absolutwertgeber: Set-Parameter

CAN ID	MAC ID	Service	Class	Instance	Attribut ID	Data		
		Code	ID	ID				
	Byte0	Byte1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
41C	0A	10	23	01	0b	х	-	-

X: 1 hex für CW (Default) 0 hex für CCW

Absolutwertgebe	Bestätigung	

CAN ID	MAC ID	Service Code
	Byte0	Byte1
41B	0A	90

7.2.2. Auflösung pro Umdrehung

Master an Absolu	twertgeber:	Set-Pa	arameter					
CAN ID	MAC ID	Service	Class	Instance	Attribut ID	Data		
		Code	ID	ID				
	Byte0	Byte1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
41C	0A	10	23	01	2C	Х	Х	-

X: gewünschte Auflösung pro Umdrehung

Absolutwertgeber an Master: Bestätigung

CAN ID	MAC ID	Service Code		
	Byte0	Byte1		
41B	0A	90		

7.2.3. Gesamtauflösung

Zur Übertragung der Gesamtauflösung muss eine fragmentierte Übertragung durchgeführt werden.

Daher sind die nachfolgenden beiden Telegramme zu senden.

Master an Absolutwertgeber:		Set-Para	ameter					
CAN ID	MAC ID	Fragment	Service	Class	Instance	Attribut ID		
			Code	ID	ID			
	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
41C	8A	00	10	23	01	2D	Х	Х

Absolutwertgebe	Bestätigung		
CAN ID	MAC ID		
	Byte0	Byte 1	Byte 2
41B	8A	C0	00

Master an Absolutwertgeber: Set-Parameter

CAN ID	MAC ID	Fragment				
	Byte 0	Byte 1	Byte 6	Byte 7		
41C	8A	81	Х	Х		

X: gewünschte Gesamtauflösung

Absolutwertgebe		Bestätigung	
CAN ID	MAC ID		
	Byte0	Byte 1	Byte 2
41B	8A	C1	00

Absolutwertgebe	Bestätigung		
CAN ID	Service Code		
	Byte0	Byte1	
41B	0A	90	

7.2.4. Presetwert

Master an Absolutwertgeber: Set-Parameter Attribut ID CAN ID MAC ID Class Instance Fragment Service Code ID ID Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 41C 8A 00 10 23 01 2E Х Х

X: gewünschter Presetwert

Absolutwertgeber an Master: Bestätigung

CAN ID	MAC ID		
	Byte0	Byte 1	Byte 2
41B	8A	C0	00

Master an Absolutwertgeber: Set-Parameter

CAN ID	MAC ID	Fragment				
	Byte 0	Byte 1	Byte 6	Byte 7		
41C	8A	81	Х	Х		

X: gewünschter Presetwert

Absolutwertgebe	r an Maste	r:	Bestätigung
CAN ID	MAC ID		
	Byte0	Byte 1	Byte 2
41B	8A	C1	00

Absolutwertgebe	r an Master:	Bestätigung
CAN ID	MAC ID	Service Code
	Byte0	Byte1
		90

7.2.5. Baudrate

Master an Absolutwertgeber: Set-Parameter

CAN ID	MAC ID	Service	Class	Instance	Attribut ID	Data		
		Code	ID	ID				
	Byte0	Byte1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
41C	0A	10	23	01	6E	Х	-	-

X: Wert der Baudrate

Х	Baudrate
0	125kbaud
1	250kbaud
2	500kbaud

Absolutwertgebe	r an Master:	Bestätigung
CAN ID	MAC ID	Service Code
	Byte0	Byte1
41B	0A	90

7.2.6. MAC-ID

Master an Absolu	twertgeber:	Set-Pa	arameter					
CAN ID	MAC ID	Service	Class	Instance	Attribut ID	Data		
		Code	ID	ID				
	Byte0	Byte1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
41C	0A	10	23	01	6F	Х	-	-

X: gewünschte MAC-ID

Absolutwertgebe	r an Master:	Bestätigung
CAN ID	MAC ID	Service Code
	Byte0	Byte1
41B	0A	90

7.2.7. Speicherübernahme

Master an Absolutwert	geber: Set-Para	neter		
CAN ID	MAC ID	Service Code	Class ID	Instance ID
	Byte0	Byte1	Byte 2	Byte 3
41C	0A	32	23	01

Ist die Übertragung erfolgreich, meldet sich der Absolutwertgeber nach 2s mit einer Duplicate MAC ID zurück. Der Master muss anschließend den Slave neu allocaten. Der verwendete Service Code zum Abspeichern der Werte ist herstellerspezifisch.

War die Übertragung nicht erfolgreich wird eine Fehlermeldung gemeldet.

8. Projektierung unter RsNetworx

8.1. EDS-File

Das EDS File enthält Informationen über gerätespezifische Parameter sowie mögliche Betriebsarten des Encoders. Hiermit steht in elektronischer Form eine Art Datenblatt zur Verfügung, das zur Projektierung unter z.B. RsNetworx verwendet werden kann.

1.1 EDS Wizard

Bevor ein Encoder an den Bus angeschlossen werden kann, muss das EDS FILE installiert werden. Das EDS File kann bequem mittels des EDS Wizards installiert werden. Um den EDS Wizard zu starten muss man mit dem Cursor auf <u>Tools/EDS Wizard</u> in der Menüleiste klicken. Wird der EDS Wizard erfolgreich gestartet, so erscheint ein Fenster, wie oben in Bild 1.1 zu sehen ist. Um ein EDS File zu installieren, muss <u>Register an EDS File(s)</u> und danach <u>weiter</u> angeklickt werden. Im nächsten Schritt muss <u>Register a directory of EDS files</u> angeklickt und mittels <u>Browse</u> der Pfad des EDS Files angeben werden. Dies ist auch unten in Bild 1.2 zu sehen.

1.2 EDS Wizard

Der Wizard findet alle EDS Files, die in diesem Pfad abgelegt sind und führt einen kleinen Test durch, ob Fehler im EDS File enthalten sind. Wird nun der Button <u>weiter</u> betätigt, wird man zum <u>Change Graphic Image</u> Fenster (Bild 1.3) weitergeleitet, hier können den verwendeten Knoten Bilder zugewiesen werden. Mit <u>weiter</u> kann die Installation fortgeführt und fertig gestellt werden.

1.3 EDS Wizard

8.2. Treiber Konfiguration

Nachdem das EDS File installiert worden ist, ist der nächste Schritt den passenden Treiber auszuwählen. Über <u>Start/Programme/Rockwell</u> <u>Software/RSLinx</u> wird RSLinx gestartet. Mit diesem Programm kann der passende Treiber ausgewählt werden. Hier ist noch zu erwähnen, dass an diesem Beispiel der Treiber Typ 1770KFD verwendet wird. Im weiteren Verlauf muss über die Menüleiste <u>Communications/Configure</u> <u>Drivers</u> das Fenster <u>Configure Drivers</u> gestartet werden und im drop down Menü <u>Available Driver</u> <u>Types</u> der Treiber Typ 1770-KFD, wie unten in Bild 1.4 zu sehen ist, ausgewählt und mit <u>Add</u> <u>New</u> bestätigt werden.

	Add New	Help
Ethernet devices	1	
1784-KT/KTX(D)/PKTX(D)/PCMK for DH+/DH-485 devices		
DF1 Polling Master Driver	Status	
1784-PCC for ControlNet devices		Configure.
1747-PIC / AIC+ Driver		Charles
DF1 Slave Driver S-S SD/SD2 for DH+ devices		starjup
Virtual Backplane (SoftLogix58xx)		Start
DeviceNet Drivers (1784-PCD/PCIDS,1770-KFD,SDNP1_driver PLC-5 (DH+) Emulator driver	sj	-
SLC 500 (DH485) Emulator driver		Stop
SontLogiko driver Remote Devices via Linx Gateway		Delete

1.4 Cofigure Drivers

Ist der passende Treiber ausgewählt, kann im Fenster <u>Driver Configuration</u> der Treiber konfiguriert werden. Hierbei wird auch die verwendete Daten Rate des Device Net Netzwerkes eingetragen (Bild 1.5). Im nächsten Schritt kann noch ein gewünschter Name eingetragen werden.

Allen-Bradleu	1770.KED Driver	
Driver Bevisio	n: 206	
Copyright © 1 Allen-Bradley I A Division of F	998 Company Rockwell Automation	
FD Driver Setup		
Serial Port Setup	DeviceNet Port Setup	
Port Select COM 1	Node <u>A</u> ddress 62	_ ÷
Data <u>B</u> ate 57600	Data Rate 250K	•
Modem Setup		
Use Modem Dialer Display Info	Configure Dialer	
This port is not currently in	use.	

1.5 Driver Configuration

8.3. Netzwerkaufbau

Hier soll noch kurz erwähnt werden, wie man ein Netzwerk online schaltet und einen Encoder parametriert. Über die Menüleiste <u>Network/</u> <u>Online</u> wird das Fenster <u>Browse for network</u> geöffnet. Dort muss der Treiber <u>1770-KFD</u> ausgewählt werden, der im Kapitel 6.2 beschrieben wird, um das Netzwerk online zu schalten. Nachdem das Netzwerk online geschaltet ist, sucht RsNetworx nach verfügbaren Knoten im Netzwerk. Dies wird auch in Bild 1.6 dargestellt.

*DeviceNet - RSNetWorx for DeviceNet		_ 8 ×
Eile Edit <u>V</u> iew <u>N</u> etwork <u>D</u> evice Diagnostics <u>T</u> ools <u>H</u>	elp	9 1
🎦 🖆 - 🔒 🎒 X 🖻 💼 😽	@ Q E 推 課 - 品 📰 🎜	
Hardware XI Hardware XI Participation Adapter Category A C Drive Barcode Scanner Communication Adapter Communication Adapter Communication Adapter Communication Adapter Communication Adapter Communication Adapter Communication Machine Interface Inductive Proximity Switc Communication Face Communication Adapter Communication Ad	ABA	
xi	Λ	
Message Code Date	Description	
DNET:0101 12.05.2005 15:39:25 See	Mode changed to online. The online path is KLIMA-LAPTOP!1770-KFD-1.	
Ready		Browsing - 19
😹 Start 🛛 👩 🥭 🇐 🛛 🖓 Unbenannt - Paint	Gigene Dateien	A 🗐 🕐 15:39

1.6 Browsing Network

Um den Encoder zu parametrieren, muss das Konfigurations-Fenster über <u>Device/Properties</u> in der Menüleiste geöffnet werden. Über <u>Parameters</u> erfolgt dann ein Upload der Encoder-Parameter.

1.7 Upload Parameter

Nach dem erfolgreichen Upload der Parameter können diese wie im unten stehenden Bild 1.8 konfiguriert werden. Hier ist noch kurz zu erwähnen dass die MAC-ID und die Baudrate nur bei Encoder ohne Anschlusshaube über RsNetworx konfiguriert werden kann. Ein Download der konfigurierten Parameter kann mit dem gelben Pfeil, der nach unten zeigt und rechts oben im Fenster zu finden ist, durchgeführt werden - ein Upload mit dem links neben dem Download Button stehenden Pfeil, der nach oben zeigt. Damit der Positionswert angezeigt wird, muss man den Button <u>Monitor</u> betätigen. Hierbei ist noch zu beachten, dass die konfigurierten Parameter noch nicht in den EEPROM gespeichert sind. Um die Daten in den EEPROM zu speichern, muss über der Menüleiste <u>Device/Class Instance</u> Editor aufgerufen werden. Die dafür erforderlichen Einträge können dem unten stehenden Bild 1.9 entnommen werden. Mit execute werden die Daten ins EEPROM gespeichert.

1	Faraneter	
	Cada annuanan daduuina	
-	Code sequence dockwise	20 Stops
2	Tetal Resolution	40 Steps
4	Precet Value	10 Steps
5 4	Preset value	1 Steps
6	MAC-ID	4 No
7	Baudrate	1 No.
,	badarato	
		U NO. 1 NO.
		2 No.
		E no.

1.8 Configure Parameters

🗱 Service Class Instance Attribute Editor - [Node 32] 🛛 📪 🗙			
Vinrecognized Device			
Execute Transaction Arguments Service Code Object Address			
Value Description 32 Other Class: Instance: Attribute: 23 1 1 Value Description 32 Other Send the attribute ID			
Image:			
Values in <u>d</u> ecimal Execute			
Receive Data			
Byte The execution was completed.			
Badix: Decimal			
<u>C</u> lose <u>H</u> elp			

1.9 Service Class Instance Attribute Editor

9. Technische Daten

9.1. Elektrische Daten

Schnittstelle	Transceiver nach ISO 11898, bis 64 Knoten
	galvanisch getrennt durch Optokoppler
Baudrate	125, 250, 500 KBaud einstellbar über Anschlusshaube
Adressierung	Adresse über Drehschalter in der Anschlusshaube einstellbar
Versorgungsspannung	10 - 30 V DC (absolute Grenzwerte)
Stromaufnahme	max. 230 mA bei 10 V DC, max. 100 mA bei 24 V DC
Schrittfrequenz LSB	800 kHz
Teilungsgenauigkeit	± ½ LSB (12 Bit), ± 2 LSB (16 Bit)
EMV	Störaussendung: EN 61000-6-4
	Störfestigkeit: EN 61000-6-2
Lebensdauer elektrisch	> 10 ⁵ h

9.2 Mechanische Daten

Gehäuse	Aluminium, optional Edelstahl		
Lebensdauer	Abhängig von Ausführung, Wellenbelastung – siehe Tabelle		
Maximale Wellenbelastung	Axial 40 N, radial 110 N		
Trägheitsmoment des Rotors	\leq 30 gcm ²		
Reibungsmoment	≤ 3 Ncm (Ausführungen ohne Wellendichtring)		
Drehzahl (Dauerbetrieb)	Singleturn: max. 12000 min ⁻¹		
	Multiturn: max. 6000 min ⁻¹		
Schockfestigkeit (EN 60068-2-27)	≤ 30 g (Halbsinus, 11 ms)		
Dauerschock (EN 60028-2-29)	\leq 10 g (Halbsinus, 16 ms)		
Schwingfestigkeit (EN 60068-2-6)	≤ 10 g (10 Hz 1000 Hz)		
Masse (Ausführung Standard)	Singleturn: ca. 500 g		
	Multiturn: ca. 700 g		
Masse (Ausführung Edelstahl)	Singleturn: ca. 1100g		
	Multiturn: ca. 1200g		

Flansch	Synchro (S)	Klemm (C)	Hohlwelle (B)
Wellendurchmesser	6 mm	10 mm	10 mm	15 mm
Wellenlänge bzweindringtiefe	10 mm	20 mm	20 mm	-
Welleneindringtiefe min. / max.	-	-	-	15 mm / 30 mm

Minimale Lebensdauer mechanisch

Flanschbaugruppe	Lebensdauer in 10^8 Umdrehungen bei F _a / F _r		
	40 N / 60 N	40 N / 80 N	40 N / 110 N
C10 (Klemmflansch 10 x 20)	247	104	40
S10 (Synchroflansch 10 x 20)	262	110	42
S6 (Synchroflansch 6 x 10) ohne Wellendichtung	822	347	133

S6 (Synchroflansch 6 x 10) mit Wellendichtung: maximal 20 N axial, 80 N radial

Umgebungsbedingungen

Arbeitstemperaturbereich	-40 +85 ℃
Lagertemperaturbereich	-40 +85 °C
Relative Luftfeuchtigkeit	98 % (ohne Betauung)
Schutzart (EN 60529)	Gehäuseseite: IP 65
	Wellenseite: IP 64 (optional mit Wellendichtring: IP66)

Mechanische Zeichnungen

Synchroflansch (S)

Zwei Ausführungen lieferbar

Synchroflansch	d / mm	l/mm
Ausführung S06	6 _{f6}	10
Ausführung S10	10 _{h8}	20

Schlüsselweite, wrench size=17

Klemmflansch (C)

Hohlwelle (B)

Schlüsselweite, wrench size=17

Montagehinweise

Der Klemmring darf nur auf der Hohlwelle angezogen werden wenn der Winkelcodierer auf der Welle des Antriebselements steckt.

Der Hohlwellendurchmesser kann durch ein Reduzierstück auf 8 mm, 10 mm oder 12 mm angepasst werden. Dieses Reduzierstück wird einfach in die Hohlwelle geschoben. Dünnere Wellen des Antriebselements sind wegen den mechanischen Belastungen nicht zu empfehlen.

Die zulässigen Wellenbewegungen des Antriebselementes sind in der folgenenden Tabelle aufgeführt:

	Axial	Radial
statisch	± 0,3 mm	± 0,5 mm
dynamisch	± 0,1 mm	± 0,2 mm

Anschlusshaube AH58-B1DA-1BW, 5poliger Rundstecker M12, Micro Style

Quadratflansch (Q)

Synchroflansch (S)

Zwei Ausführungen lieferbar

Synchroflansch	d / mm	l / mm
Ausführung S06	6 _{f6}	10
Ausführung S10	10 _{h8}	20

Kabelabgang (Kabeldurchmesser = 8 mm)

		L in mm
Single-Turn	axial	53
	radial	53
Multi-Turn	axial	62
	radial	62

Klemmflansch (C10)

Kabelabgang (Kabeldurchmesser = 8 mm)

		L in mm
Single-Turn	axial	53
	radial	53
Multi-Turn	axial	62
	radial	62

Synchroflansch (S), 5 poliger Stecker

Die Maße der Ausführungen beim Klemmflansch in der Variante 5 poliger Stecker sind gehäuseseitig auch für den Synchroflansch gültig.

		L im mm
Single-Turn	axial	53
	radial	53
Multi-Turn	axial	62
	radial	62

Sacklochhohlwelle (B)

Auch mit Kabelabgang lieferbar. Siehe Zeichnungen Vollwelle.

		L
Single-Turn	axial	72
	radial	72
Multi-Turn	axial	81
	radial	81

Montagehinweise

Der Klemmring darf nur auf der Hohlwelle angezogen werden wenn der Winkelcodierer auf der Welle des Antriebselements steckt.

Der Hohlwellendurchmesser kann durch ein Reduzierstück auf 8 mm oder 10 mm angepasst werden. Dieses Reduzierstück wird einfach in die Hohlwelle geschoben. Dünnere Wellen des Antriebselements sind wegen den mechanischen Belastungen nicht zu empfehlen. Die zulässigen Wellenbewegungen des Antriebselementes sind in der folgenenden Tabelle aufgeführt:

	Axial	Radial
statisch	± 0,3 mm	± 0,5 mm
dynamisch	± 0,1 mm	± 0,2 mm

Heavy Duty Ausführung

Sowohl in schwierigen Industrieumgebungen wie auch bei Baumaschinen lassen sich die "Outdoor Encoder" problemlos einsetzen. Neben der Maßnahmen gegen Betauung wurde bei dieser Encoderfamilie besonderes Augenmerk auf mechanische Robustheit, EMV-Festigkeit und leichte Handhabbarkeit auch für Nicht-Service-Personal gelegt. Über spezielle Verschraubungen wird die Spannungsversorgung angeschlossen und die Busleitung in den Encoder ein- und wieder ausgeführt. Die Projektierung und Parametrierung kann mit praktisch allen gängigen Projektierungstools vorgenommen werden. Dazu werden einfach die von POSITAL mitgelieferten Projektierungsdateien in das Projektierungstool eingebunden.

Hauptmerkmale

- Kompakte Bauform
- robustes Gehäuse
 - Druckausgleichselement f
 ür Outdoor Einsatz gegen Kondensatbildung
- integrierter T-Verteiler
- Standard Schutzart:
 - IP66 wellenseitig
 - IP67 gehäuseseitig

Heavy Duty Ausführung mit Vollwelle

In zwei Ausführungen lieferbar

Heavy Duty Ausführung mit Hohlwelle

Zulässige Wellenbewegung vom Antriebselement ist in der Tabelle aufgeführt.

	Axial	Radial
statisch	± 0,3 mm	± 0,5 mm
dynamisch	± 0,1 mm	± 0,2 mm

Ausführungen / Bestellbezeichnung

Bezeichnung	Typenschlüss	sel								
Optocode	OCD-	D2	B1	В-			_			000
Schnittstelle	DeviceNet	D2								
Version			B1							
Code	Binär			В						
Umdrehungen (Bits)	Singleturn				00					
	Multiturn (4096	6 Umdreh	nungen))	12					
	Multiturn (1638	34 Umdre	ehunger	ר)	14					
Schritte pro Umdrehung	4096					12				
(Bits)	8192					13				
	65536					16				
Flansch	Klemmflansch						С			
	Synchroflanscl	h					S			
	Honiwelle	-					в			
Wellendurchmesser	10 mm	1					Q	10		
	06 mm							06		
	15 mm (Hohlw	elle)						15		
Optionen Mechanik	ohne	,							0	
	Wellendichtring	g (IP66)							S	
	Edelstahlausfü	ihrung (n	icht bei	radia	ler Aus	führung	g)		V	
	Heavy Duty								Н	
	kundenspezifis	sch							С	
Anschluss	Anschlusshaul	ре								000
	muss separat l	bestellt w	erden -	- sieh	e Zube	hör				
Steckerabgang, radial, 5 pol. MicroStyle Steckerabgang, axial, 5 pol. MicroStyle						PRM				
						PAM				
	Kabelabgang radial, 1m, offenes Kabelende					CRW				
	Kabelabgang axial, 1m, offenes Kabelende					CAW				
	Heavy Duty									PKN

Standard = fett, weitere Ausführungen auf Anfrage

Anschlusshauben

	Beschreibung	Тур
Standard	T-Koppler-Funktionalität mit integrierter	AH 58-B1DA-3PG
DeviceNet	Adressierung	
	Ausführung in Edelstahl	AH 58-B1DA-3PG-VA
	Anschluss über 5 pin Rundstecker, Micro-Style	AH 58-B1DA-1BW
Alternativausführung	2 Kabelverschraubungen f. Kabel-Ø : 9–13mm	AH 58-B1DA-2M20
DeviceNet		

Zubehör und Dokumentation

Bezeichnung		Тур
Wellenkupplung*	Bohrung: 10 mm	GS 10
	Bohrung: 6 mm	GS 06
Spannscheiben*	4 Stück / AWC	SP 15
Spannhalbringe*	2 Stück / AWC	SP H
Benutzerhandbuch**	Installations- und Konfigurationsanleitung, deutsch	UMD-DA
Benutzerhandbuch**	Installations- und Konfigurationsanleitung, englisch	UME-DA
EDS-File**	Diskette mit EDS-File zur Konfiguration (für OCC)	OCD-DN-C
EDS-File**	Diskette mit EDS-File zur Konfiguration	OCD-DN-0
Reduzierring***	15 mm auf 12 mm	RR 12
Reduzierring***	15 mm auf 10 mm	RR 10
Reduzierring***	15 mm auf 8 mm	RR 8

* nicht für Hohlwelle erforderlich

** Besuchen Sie unsere Homepage <u>www.posital.de</u>. Hier können Sie die aktuelle Datei kostenlos herunterladen.

*** nur für Hohlwelle

Druckfehler, Irrtümer bei technischen Angaben und technische Änderungen vorbehalten.