

Absoluter Winkelcodierer mit INTERBUS-Interface

Benutzerhandbuch

Impressum

FRABA POSITAL GmbH Schanzenstraße 35 D-51063 Köln Telefon +49 (0) 221 96213-0 Internet www.posital.de Telefax +49 (0) 221 96213-20 e-mail info@posital.de

Urheberrechtschutz

Für diese Dokumentation beansprucht die Firma FRABA Posital GmbH Urheberrechtschutz. Diese Dokumentation darf ohne vorherige schriftliche Genehmigung der Firma FRABA Posital GmbH weder abgeändert, erweitert, vervielfältigt noch an Dritte weitergegeben werden.

Änderungsvorbehalt

Technische Änderungen der in dem vorliegenden Dokument enthaltenen technischen Informationen, die aus dem stetigen Bestreben zur Verbesserung unserer Produkte resultieren, behalten wir uns jederzeit vor.

Dokumenteninformation

Dateiname:	UMD OCD IB						
Ausgabestand:	6.11.2003						
Versionsnummer:	11/03						
Verfasser:	Reiner Bätjer						

Service-Telefon

Für technische Unterstützung, Rückfragen und Anregungen zur Verbesserung unserer Produkte und Dokumentationen stehen wir Ihnen gerne zur Verfügung. Telefon +49 (0) 221 96213-27.

1 Einleitung4
1.1 Der absolute Winkelcodierer4
1.2 Das Bussystem INTERBUS5
1.3 Definitionen und Abkürzungen5
2 Encoder Klassifizierung6
2.1. Profilübersicht
2.1.1 Profil K1
2.1.2 Profil K2
2.1.3 Profil K37
2.2 Identifier7
3 Hardwareaufbau und INTERBUS-Vernetzung 8
3.1 Netztopologie
3.2 Anschluss der Busteilnehmer10
3.3 Diagnose LEDs11
4 Die INTERBUS CMD-Software12
4.1 Konfiguration12
4.2 Monitor
4.3 Diagnose12
4.4 Einsatz der CMD-Software13
4.4.1 Projektierung eines INTERBUS Netzes 13
4.4.2 Inbetriebnahmefunktionen14
4.4.3 Diagnosefunktionen
5 Programmierung der Encoder-Parameter15
5.1 Einfügen eines FRABA INTERBUS K3-
Encoders
5.2 Vorbereitung der Parametrierung
5.3 Parametrierung
5.4 Herstellerspezifische Funktionen
5.4.1 FRABA Preset
5.4.2 Geschwindigkeitsmodus
5.4.3 Ausiesemodus
5.4.4 Nockenmodus

6.1 Elektrische Daten	23
6.2 Mechanische Daten	23
6.2.1 Minimale Lebensdauer mechanisch	24
6.3 Umgebungsbedingungen	24
7 Maßzeichnungen	25
7.1 Synchroflansch	25
7.2 Klemmflansch	25
8 Ausführungen / Bestellbezeichnung	26
8.1 Zubehör und Dokumentation	27
9 Anhang	28
9.1 Profil Funktionen	28
9.2 Herstellerspezifische Funktionen	28
9.3 Fehlercode	30
9.4 Diverse Rückgabecodes	30
9.5 Nocken Funktionen	31
9.6 Fehlercodes	31

1 Einleitung

1.1 Der absolute Winkelcodierer

Absolute Winkelcodierer liefern für jede Winkelstellung einen absoluten Messwert. Diese Werte sind als Codemuster auf einer oder mehreren Codescheiben abgebildet. Die Codescheibe wird mittels einer Infrarot-LED durchleuchtet und das erhaltene Bitmuster durch ein Opto-Array detektiert. Die gewonnenen Signale werden elektronisch verstärkt und zur Verarbeitung an das Interface weitergeleitet.

Der Absolutwertgeber hat eine maximale Grundauflösung von 8192 Schritten pro Umdrehung (13 Bit). In der Multi-Turn Ausführung werden bis zu 4096 Umdrehungen (12 Bit) aufgelöst. Daraus ergibt sich eine Gesamtauflösung von maximal 25 Bit = 2^{25} = 33.554.432 Schritten. Die Standard Single-Turn Ausführung hat 12 Bit, die Standard Multi-Turn Ausführung 24 Bit.

Der Absolutwertgeber erfüllt alle Anforderungen des INTERBUS-Profils nach Maßgabe der Encoder-Nutzerorganisation *Encom*. Das Profil entspricht der europäischen INTERBUS-Norm, EN 50254. Die integrierte INTERBUS Schnittstelle des Absolutwertgebers ist für den Anschluss an den Installations-Fernbus ausgelegt. Die eingebundene Software unterstützt alle Funktionen des Encoder-Profils K3 für INTERBUS. Die Datenausgabe erfolgt generell im Binärcode. Beim absoluten Winkelcodierer mit INTERBUS Interface nach dem Profil K3 lassen sich folgende Funktionen des Absolutwertgebers direkt über den Busverkehr parametrieren:

- Drehrichtung (Complement)
- Auflösung / Umdrehung bei einstellbarer Anzahl der Umdrehungen
- erforderliche Anzahl der Umdrehungen bei vorgegebener Gesamtauflösung
- Presetwert
- Nullpunktverschiebung
- Geschwindigkeitsausgabe (herstellerspezifisch)
- Nocken (herstellerspezifisch, optional)

Um die Inbetriebnahmezeiten wesentlich zu verkürzen, wird vom absoluten Winkelcodierer die Windows-Version der CMD Software "Configurating - Monitoring - Diagnostics" (Versionen G3 und G4) unterstützt. Diese ist für alle INTERBUS-Masteranschaltungen von der Firma Phoenix Contact in 32819 Blomberg (Telefon: +49 (0) 5235 / 34 02 22) erhältlich und entspricht grundsätzlich dem in diesem Handbuch beschriebenen Aufbau.

Seite 4

1.2 Das Bussystem INTERBUS

Der stetig wachsende Automatisierungsgrad im allgemeinen, aber auch die komplexer gewordenen Anforderungen der Fertigungs- und Verfahrenstechnik verlangen nach immer leistungsfähigeren Sensoren und Aktoren für den speziellen Anwendungsfall. INTERBUS ist ein schnelles, universelles und offenes Sensor-/Aktor- Bussystem mit einem Master und mehreren Slaves. INTERBUS verlagert die Ein-/Ausgabe-Ebene von einer übergeordneten Steuerung direkt an die Maschine oder in die Anlage. Ein serielles Buskabel verbindet die Steuerung mit den installierten E/A-Modulen in der Anlage. Dadurch wird der Verkabelungsaufwand gegenüber der konventionellen Parallelverdrahtung auf ein Minimum reduziert.

Der INTERBUS als offenes Bussystem wird bereits heute von über 500 Geräteherstellern mit den verschiedensten Produkten unterstützt. Dieses ermöglicht Ihnen die Auswahl der jeweils leistungsfähigsten und wirtschaftlichsten Komponenten für Ihren speziellen Anwendungsfall.

1.3 Definitionen und Abkürzungen

Busteilnehmer	Gerät, welches Daten über den						
	Bus senden, empfangen oder						
	verstärken kann.						
Diagnose	Erkennung, Lokalisierung, Klas-						
	sifizierung, Anzeige, weitere						
	Auswertung von Fehlern,						
	Störungen und Meldungen.						
INTERBUS	Feldbus, der in der europäischen						
	INTERBUS-Norm (EN 50254)						
	festgelegt ist.						

Außerdem werden folgende Abkürzungen in diesem Benutzerhandbuch verwendet:

- API Absoluter Positions-Istwert
- CW Clockwise. Drehrichtung im Uhrzeigersinn (auf Welle gesehen)
- CCW Counterclockwise. Drehrichtung entgegen dem Uhrzeigersinn (auf Welle gesehen)
- PW Presetwert
- PI Prozess-Istwert
- VC Geschwindigkeit
- MSB most significant bit (höchstwertiges Bit)
- LSB least significant bit (niederwertigstes Bit)

2 Encoder Klassifizierung

Die absoluten Winkelcodierer mit INTERBUS Interface übertragen den Prozess-Istwert im Binärcode. Man unterscheidet zwischen nichtparametrierbaren (K1 und K2) und parametrierbaren (K3) Absolutwertgebern. Die Profile für die Encoder Klassen K1 bis K3 sind von der Nutzerorganisation *Encom* vorgegeben, die den reibungslosen Datenaustausch zwischen Endgeräten verschiedener Hersteller gewährleisten. Die in jedem absoluten Winkelcodierer integrierte Software ermöglicht umfangreiche Einsatzmöglichkeiten für verschiedenste Applikationen für ein und denselben Encodertyp.

nicht programmierbar. Sie unterscheiden sich nur

in der Anzahl der ausgegebenen Bytes (2 Bytes

bei K1, 4 Bytes bei K2). Profil K3 verfügt über 4

Ein- und 4 Ausgangsbytes und ist folglich pro-

2.1. Profilübersicht

FRABA Encoder unterstützen drei unterschiedliche ENCOM-Profile. Diese Profilversionen unterscheiden sich in der Anzahl der Ein- und Ausgangsbytes. Die Versionen K1 und K2 können keine Ausgangsdaten des Masters empfangen und sind

Profil	IN Bytes	OUT Bytes
K1	2	0
K2	4	0
K3	4	4

2.1.1 Profil K1

Die absoluten Winkelcodierer mit K1 Profil liefern 16 Bit Prozessdaten. Diese Daten sind binär codiert und rechtsbündig angeordnet. Die Encoder verfügen über keine eigene Intelligenz und sind daher nicht parametrierbar. Dieses Encoder Profil

wird meist für Single-Turn-Encoder verwendet

(angegebenes Beispiel: 12 Bit Single-Turn).

Bitnummer	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bedeutung	0	0	0	0	MSB	х	х	х	х	х	х	х	х	х	х	LSB

grammierbar.

2.1.2 Profil K2

Die absoluten Winkelcodierer mit K2 Profil liefern 32 Bit Prozessdaten. Diese Daten sind binär codiert und rechtsbündig angeordnet. Die Encoder verfügen über keine eigene Intelligenz und sind daher nicht parametrierbar. Dieses Encoder Profil wird meist für Multi-Turn-Encoder verwendet (angegebenes Beispiel: 24 Bit Multi-Turn).

Bitnummer	31	30	29	28	27	26	25	24	23	22	21		3	2	1	0
Bedeutung	0	0	0	0	0	0	0	0	MSB	х	х	х	х	х	х	LSB

2.1.3 Profil K3

Die absoluten Winkelcodierer mit Profil K3 sind parametrierbar. Sie liefern 32 Bit Prozessdaten, davon sind 25 Bit Positions-Istwert und 7 Bit Status- bzw. Steuerbits. Die Datenbits 0 bis 24 sind binär codiert und rechtsbündig angeordnet. Zur Parametrierung verarbeitet der Encoder 32 Bit Prozessdaten (3 Statusbits, 4 Parameterbits und 25 Datenbits).

	State	usbits		Para	meter	bits		Datenbits									
Bitnummer	31	30	29	28	27	26	25	24	23	22	21			3	2	1	0
Bedeutung	0	0	0	0	0	0	0	MSB	х	х	х	х	x	х	х	х	LSB

Die Parametrierung erfolgt über den Prozess-Datenkanal. Im Steuerwort erteilt der Bus-Master Gerätesteuerbefehle. Mit dem Statuswort werden dem Master Gerätezustände und GeräteMeldungen übertragen. Als Steuer- und Statuswort stehen nur die Bits 25 bis Bit 31 zur Verfügung, die restlichen 25 Bits (Bit 0 bis Bit 24) sind für den Positions-Istwert reserviert.

2.2 Identifier

Die folgenden Identifier leiten sich aus den unterschiedlichen Profilversionen und Schnittstellen ab:

Interface	Identifier 1	für K1	Identifie	r für K2	Identifier für K3		
INTERBUS	36h 54d		36h	54d	37h	55d	
INTERBUS LWL	36h	54d	36h	54d	37h	55d	
INTERBUS Loop2	B2h	178d	B2h	178d	B3h	179d	

3 Hardwareaufbau und INTERBUS-Vernetzung

3.1 Netztopologie

Der physikalische Aufbau eines INTERBUS-Systems ist immer der eines Ringes. Der INTER-BUS wird als kompakter Strang, einer Richtung folgend, in der Anlage verlegt. Beginnend an der SPS-Anschaltbaugruppe oder IPC-Masterkarte verbindet das Bussystem die jeweiligen Steuerungs- oder Rechnersysteme mit den in die Peripherie verlagerten Ein- und Ausgabemodulen (INTERBUS Teilnehmer). Der durch die Anlage verlegte Hauptstrang wird als Fernbus (Remote Bus, RB) bezeichnet und überbrückt die Entfernungen bis zu 12,8km insgesamt zwischen dezentralen Unterstationen. Vom Fernbus sind Nebenstränge (Stichleitungen) als lokale Abzweige möglich. Diese werden - je nach Typ - als Installationsfernbus oder Peripheriebus bezeichnet. Der Installationsfernbus entspricht dem Aufbau nach dem Fernbus, bietet aber die Option, eine Versorgungsspannung für Sensoren im Buskabel mitzuführen. Der Installationsfernbus eignet sich zum Aufbau von verteilten Unterstationen mit direktem Anschluss der Sensoren und Aktoren. Daraus resultiert ein optimal kurzer und kostengünstiger Sensor-/Aktor-Anschluss. Der Peripheriebus ist für den kostengünstigen und flexiblen Aufbau einer dezentralen Unterstation in Schaltschränken und Klemmenkästen konzipiert. Die verschiedenen Peripheriebusteilnehmer werden über den Peripheriebus untereinander und mit der jeweiligen Busklemme verbunden. Die Busklemme koppelt den Peripheriebus den Fernbus an an.

Stift (IB-In)	Signal	Buchse (IB-Out)
1	DO	1
2	DO	2
3	DI	3
4	DI	4
5	Masse	5
6	Schutzleiter	6
7	+ 12-30 V DC	7
8	GND (0V)	8
9	RBST	9 *

Steckerbelegung des 9poligen Standardsteckers:

*Wird beim FRABA-Winkelcodierer (Version 2) nicht mehr benötigt

Steckereinsatz bzw. Gegenstecker Lötseite

3.2 Anschluss der Busteilnehmer

Die einzelnen Busteilnehmer werden über ein Kabel untereinander verbunden, das zum einen die Busleitung in Richtung vom Master her kommend, zum anderen die Busleitung zum Master hin zurückführend enthält.

Der Standard INTERBUS-Encoder wird über zwei 9-polige Rundstecker mit dem Buskabel verbunden. Aufgrund der mitgeführten Spannungsversorgung ist das ankommende Buskabel als Buchse (Einbaustecker am Encoder male), das weiterführenden Buskabel als Stiftstecker (Einbaustecker am Encoder female) ausgelegt.

Eine Adressierung der einzelnen Busteilnehmer ist nicht notwendig, da die Adresse durch die physikalische Position des Sensors / Aktors im Bus gegeben ist. Bei Anschluss des Standard-INTERBUS-Encoders muss darauf geachtet werden, dass der Kabelschirm Verbindung zum Encodergehäuse hat, um Störsicherheit zu garantieren. Beim IN-TERBUS Loop sollte das Gehäuse mit dem Schutzleiter verbunden werden.

Beispiel für den Aufbau eines INTERBUS-Netzwerks mit mehreren Busteilnehmern:

3.3 Diagnose LEDs

Zur Diagnose des Buszustandes stehen dem Benutzer direkt am Encoder vier verschieden-farbige LEDs zur Verfügung, die den Status des Busses

wiederspiegeln und mitteilen, ob eine Kommunikation erfolgt oder nicht.

Folgende Zustände werden angezeigt:

UL (PWR)	Winkelcodierer wird / wird nicht mit Spannung versorgt.
RC	Eine Kommunikation zum IBS Master ist / ist nicht möglich, die Applikation hat den
	Datenaustausch aber noch nicht gestartet.
BA	Es werden vom Master aktiv (LED an) / keine (LED aus) Nutzdaten ausgetauscht.
	Blinkt diese LED, ist die Kommunikation von Seiten des INTERBUS Masters ausge-
	setzt und es wird die Funktionsfähigkeit überwacht.
RBDA (RD)	Die weiterführende Busschnittstelle ist / ist nicht abgeschaltet

4 Die INTERBUS CMD-Software

IB-CMD, ein Softwaretool der Fa. Phoenix Contact, steht für INTERBUS Configuration - Monitoring -Diagnostics. Diese Software ermöglicht eine interaktive und steuerungsunabhängige Projektierung, Bedienung und Diagnose aller angeschlossenen Geräte in einem INTERBUS Netz. Durch Dienstprogramme, die sich einbinden lassen, können die angeschlossenen Geräte von Fremdherstellern zielgerichtet parametriert werden. FRABA-Encoder können direkt mit dem CMD-Adress-Monitor programmiert werden. FRABA stellt zusätzlich eine geschützte Software zur Encoderprogrammierung zur Verfügung. Diese kann ausschließlich zusammen mit der Phoenix Contact PC-ISA-Karte benutzt werden. Die Software ist geeignet für Windows 95/98 und NT und kann kostenlos von unserer Website www.posital.de heruntergeladen werden.

4.1 Konfiguration

Mit Hilfe dieses Programmteils können ein kompletter Busaufbau für eine Anlage entworfen und alle am INTERBUS angeschlossenen Teilnehmer konfiguriert werden. Man kann z.B. neue Geräte mit dem Programmteil "Busstruktur" einfügen, nach bestimmten Teilnehmern suchen, den Eingangsund Ausgangskanälen der Busteilnehmer mit dem Programmteil Adresszuordnung Adressen in der Steuerung vergeben und einzelne Bussegmente mit dem Programmteil "Gruppenzuordnung" zusammenfassen. Zudem besteht die Möglichkeit, den Busaufbau vor der Inbetriebnahme zu prüfen. Mit dem Programmteil "Anschaltbaugruppe" kann weiterhin die IB-Anschaltbaugruppe bedient und parametriert werden.

4.2 Monitor

Mit Hilfe dieses Programmteils können angeschlossene Geräte überwacht und beeinflusst werden. Im laufenden Betrieb der Anlage können Peripheriezustände von angeschlossenen die Geräten angezeigt bzw. Ausgangszustände verändert werden. Die Darstellungsform der angezeigten Daten hängt vom einzelnen Gerät bzw. der Gerätehersteller mitgelieferten Teilvom nehmerbeschreibung ab. Außerdem besteht die Möglichkeit, eine optimierte Darstellungsform (z.B. Zahlenwert in Hexadezimal, Binär oder Dezimal) auszuwählen.

4.3 Diagnose

Dieser Programmteil bietet bei Inbetriebnahme und Service schnelle und effektive Hilfe bei der Erkennung, Lokalisierung und Behebung von Fehlerquellen im System. Dazu gehört beispielsweise das Erkennen von defekten Busteilnehmern, Verbindungen und Fehlern in der angeschlossenen Sensorik/Aktorik mit dem Programmteil Bus-Diagnose. Eine weitere Option dieses Programmteils ist die Möglichkeit, den er-Busaufbau mit dem an der IBstellten Anschaltbaugruppe angeschlossenen Bus zu vergleichen.

4.4 Einsatz der CMD-Software

IB-CMD läuft auf Standard PCs unter MS-WINDOWS® und kann für eine Vielzahl von IB-Anschaltbaugruppen eingesetzt werden. Die Verbindung zu einer IB-Anschaltbaugruppe erfolgt über eine für alle IB-Anschaltbaugruppen standardisierte V.24-Schnittstelle. Damit ist die Software unabhängig von der eingesetzten Steuerung oder der verwendeten Programmiersoftware.

Nach dem Starten versucht IB-CMD automatisch über die V.24-Schnittstelle des PC eine Verbindung zu einer evtl. angeschlossenen IB-Anschaltbaugruppe herzustellen. Gelingt dies, wird ein im Parametrierungsspeicher der IB-Anschaltbaugruppe abgelegter Dateiname ausgelesen. Diese Datei enthält die Daten des Busaufbaus des an der Anschaltbaugruppe angeschlossenen Bussystems. Wird die Datei im Projektpfad gefunden, wird sie geladen und die Busstruktur angezeigt.

Unabhängig davon, ob eine Anschaltbaugruppe am PC angeschlossen ist oder nicht, ermöglicht der Dialog "Einstellungen" den Funktionsumfang zu wählen und die Betriebsart einzustellen. In der Betriebsart "Online" wird mit dem angeschlossenen Bus gearbeitet, in der Betriebsart "Offline" mit einem virtuellen Netz, das zunächst projektiert werden muss (Offline). Das Basisfenster von IB-CMD bietet eine Arbeitsoberfläche, die Funktionen zur Projektierung, Inbetriebnahme und Diagnose eines INTERBUS Netzes zur Verfügung stellt.

4.4.1 Projektierung eines INTERBUS Netzes

Die Projektierungsfunktionen sind unter dem Menüpunkt "Configuration" im Basisfenster zusammengefasst. Die Projektierung läuft normalerweise in 4 Bedienschritten ab:

- Schritt 1: Neues Projekt erstellen Im Menüpunkt **Datei | Neu** können Sie ein neues Projekt erstellen.
- Schritt 2: Konfiguration der Busteilnehmer Die INTERBUS-Teilnehmer müssen für das Einlesen des Busaufbaues miteinander verbunden werden. Den Menüpunkt Configuration | Konfigurationsrahmen | Neu Einlesen auswählen. IB-CMD baut nun die Busstruktur grafisch auf. Es besteht auch die Möglichkeit einzelne Teilnehmer hinzuzufügen.

Schritt 3: Adressvergabe

Wenn Sie den Konfigurationsrahmen neu aufgebaut haben, werden die Adressen automatisch vergeben. Unter dem Menüpunkt **Configuration | Prozessdaten** können Sie die Adresszuordnung selbst ändern. Die Teilnehmer-Adresse des Encoders muss größer als P128 (Peripheriebereich) sein, da die SPS sonst die Masterbits zyklisch überschreibt.

Schritt 4: Erstellte Projektierung speichern Den Menüpunkt **Datei | Speichern** auswählen.

4.4.2 Inbetriebnahmefunktionen

Für die Inbetriebnahme digitaler und analoger Geräte einer Anlage können spezielle vom Hersteller gelieferte Monitor-Programme genutzt werden. So kann jedes Gerät mit Hilfe seiner spezifischen

4.4.3 Diagnosefunktionen

Der Programmteil *Bus-Diagnose* (Menü **Diagnose** | **Bus-Diagnose**) hat die Aufgabe, alle von der Anschaltbaugruppe kommenden Meldungen anzuzeigen und zu protokollieren. Alle Meldungen werSoftware angezeigt, parametriert und überwacht werden. FRABA-Encoder können auf einfache Weise mit dem CMD-Monitor parametriert werden.

den in einem Meldungsfenster angezeigt und in einer Meldungsdatei mit Datum und Uhrzeit gespeichert.

Bildschirmoberfläche der CMD-Software mit Adressmonitor, digitalem Prozessdatenmonitor und Betriebszustandsfenster

5 Programmierung der Encoder-Parameter

5.1 Einfügen eines FRABA INTERBUS K3-Encoders

Zur Inbetriebnahme eines INTERBUS K3-Teilnehmers in einem bestehenden Busaufbau müssen folgende Schritte durchgeführt werden:

 Unter Menüpunkt Configuration | Busstruktur anwählen, um zusätzliche Teilnehmer einzufügen.

5.2 Vorbereitung der Parametrierung

Mit Hilfe der CMD-Software wird der Aufwand für die Programmierung der encoderspezifischen Parameter auf ein Minimum reduziert. Gehen Sie folgendermaßen vor:

- Klicken Sie auf den FRABA K3 Encoder
- Wählen Sie **Monitor | Digital** Monitor; das Monitorfenster "K3-Encoder" erscheint
- Wählen Sie den Modus "32 bit input"
- Klicken Sie wiederum auf den FRABA K3-Encoder

Ein- und Ausgabemonitor für die Parametrierung sind jetzt vorbereitet. Die Datenrichtung ist vom Bus aus gesehen: "Eingangsdaten" sind Daten vom Encoder zum Bus, bzw. zum Master, "Ausgangsdaten" sind Daten vom Master zum Encoder.

- Menüpunkt Bearbeiten | Einfügen mit Teilnehmerbeschreibung, aus Gruppe ENCOM RemoteBus K3 auswählen (RB_K3, ID-Code 0236h = 55d), Fernbus-Teilnehmer einfügen.
- Weitere benötigte Teilnehmer einfügen
- Öffnen Sie ein weiteres Monitorfenster
- Wählen Sie den Modus "32 bit output"
- Wählen Sie für die Anzeige der Ein- und Ausgangsdaten "hex" aus. Jedes Bit kann durch Klicken auf das Fenster geändert werden.
- Das Senden von Parametern zum Encoder wird über das Menü Process Data | Writing oder durch Schreiben von Hex-Daten ins Monitorfenster durchgeführt.

Das 32 Bit breite Datenwort im Prozesskanal hat folgende Bedeutung:

	31	30	29	28	27	26	25	240
Bedeutung	Positions-Istwert ungültig	Para- metrierungs- status	Hersteller- spezifisch	Parame	eter ode	r Fehle	rcode	Parameter

Der Gerätesteuerbefehl (vom Master an den Encoder) hat folgende Bedeutung:

Master an Encoder	31	30	29	28	27	26	25	240
Parametrierung	0	0	0	Parametercode		Parameterdaten		
Start	0> 1	0	0	0		0		
Presetwert initialisie-	0	1	0	0		0		
ren								

Der programmierte Presetwert wird durch Setzen von Bit 30 initialisiert.

Der Gerätestatus wird durch Bit 29 – 31 im Statuswort (Encoder an Master) angezeigt:

Encoder an Master	31	30	29	28	27	26	25	240
Betrieb	0	0	Х	0				
Parametrierung	1	1	Х	Parametercode				
Fehler	1	0	Х	Fehle	rcode			

5.3 Parametrierung

Im Encoderprofil K3 sind folgende Parameter programmierbar: Schritte pro Umdrehung, Drehrichtung, Presetwert und Nullpunktverschiebung. Diese Parameter können über spezielle Parametercodes eingestellt werden, die vom Master an den Encoder gesendet werden. Der Encoder sendet Positionswert, Parameterbestätigungen sowie Fehlercodes zum Master. Eine vollständige Aufstellung aller von FRABA INTERBUS Winkelcodierern akzeptierten Kommandos und Rückgabewerte befindet sich im Anhang.

Im Zustand Parametrierung haben die Bits 25	 – 28 folgende Be 	deutung:
---	--------------------------------------	----------

Parametercode	28	27	26	25	Funktion	
	0	0	0	0	Ausgabe des Positions-Istwertes im Zustand "Betrieb"	
	0	0	0	1	Parameter Schritte (vgl. Parameter Umdrehungen, dies	
					beiden Parameter bilden den Getriebefaktor)	
	0	0	1	0	Parameter: Umdrehungen	
	0	0	1	1	Drehrichtung	
	0	1	0	0	Preset-Wert	
	0	1	0	1	Nullpunktverschiebung	
Zusätzlich zu diesen Deremetersedes werden die deten zum Enseder übertregen (z.D. Schritte -						

Zusätzlich zu diesen Parametercodes werden die Parameterdaten in den Bits 0 – 24 die Parameterdaten zum Encoder übertragen (z.B. Schritte = d4095 = h0FFF).

00 0			0 (,
Parametercode	28	27	26	25	Funktion
Drehrichtung CW	0	0	1	1	0 0000 0000 0000 0000 0000 0011
im Uhrzeigersinn					
Drehrichtung CCW	0	0	1	1	0 0000 0000 0000 0000 0000 0100
gegen den Uhrzeigersinn					

Im	Zustand	"Störung"	haben	die Bits	25 - 2	8 folgende	Bedeutung:

					. 0
Fehlercode	28	27	26	25	Funktion
	0	0	0	0	kein Fehler
	0	0	0	1	Unzulässige Parameter vom Master
	0	0	1	0	Ungültiger Parametercode
	0	0	1	1	Parameterverlust

	Master an Encoder			Encoder an Master			Bedeutung
	Steu	erwort	Datenwort	Statuswo	rt	Datenwort	
	31	28 25	24 0	31 30	28 25	24 0	
1	0	0	Х	00	0	Positions-Istwert	Normalbetrieb
2	0	P-code	Parameter	0 0	0	Positions-Istwert	Master sendet Parameter an Encoder, Encoder reagiert noch nicht
3	0	P-code	Parameter	0 0	0	Positions-Istwert	Master wartet auf Quittierung vom Encoder
4	0	P-code	Parameter	0 0	0	X	Encoder übernimmt Para- meter und beginnt mit Verar- beitung
5	0	P-code	Parameter	0 0	0	x	Verarbeitung der Parameter im Encoder
6	0	P-code	Parameter	11	P-code	X	Verarbeitung der Parameter abgeschlossen, Encoder bleibt im Zustand "Paramet- rierung"
7	1	0	0	11	P-code	X	Steuerbefehl "Betrieb frei- geben" vom Master an den Encoder, Encoder zeigt noch keine Reaktion
8	1	0	0	00	0	Positions-Istwert	Encoder im Zustand "Betrieb"
9	0	0	0	0 0	0	Positions-Istwert	Master und Slave im Normal- betrieb

Der Ablauf der Parametrierung geschieht nach folgendem "Handshake"-Verfahren:

Für die Übertragung mehrerer Parameter müssen die Schritte 4 – 6 wiederholt werden.

Im Folgenden ist ein Parametrierungsbeispiel aufgeführt (alle Zahlen in hexadezimalem Format). Ein Encoder wird mit einer Auflösung von 255 Schritten/Umdrehung, Drehrichtung im Uhrzeigersinn und Presetwert 0 parametriert. Der Presetwert kann bei Bedarf mit Bit 30 (s.o.) initialisiert werden.

	Master an Encoder	Encoder an Master	Bedeutung
1	0000000	X X X X X X X X (Positionsistwert)	Normaler Betrieb
2	0 2 0 0 0 0 F F (Parametercode: Schritte, Pa- rameter: dez 255 = hex 0FF)	X X X X X X X X (Positionsistwert)	Master schickt Parameter an Encoder, Encoder zeigt noch keine Reaktion
3	020000FF	X X X X X X X X X (Positionsistwert)	Master wartet weiterhin auf Quittierung vom Encoder
4	020000FF	X X X X X X X X (Positionsistwert)	Encoder nimmt Parameter an und beginnt Verarbeitung
5	020000FF	X X X X X X X X (Positionsistwert)	Parameterverarbeitung im Encoder läuft noch
6	02000FF	C 2 0 0 0 0 F F	Verarbeitung des Parameters im Encoder abgeschlossen, Encoder bleibt im Zustand "Parametrierung"
7	0 4 0 0 0 0 0 1 (Parametercode: Umdr., Parameter: dez 1 = hex 1)	C 2 0 0 0 0 F F	Encoder gibt noch alte Rück- meldung aus
8	0400001	C 2 0 0 0 0 F F	Parameterverarbeitung im Encoder läuft, noch alte Rückmeldung
9	0400001	C 4 0 0 0 0 0 1	Verarbeitung des Parameters im Encoder abgeschlossen, Encoder bleibt im Zustand "Parametrierung"
10	0 6 0 0 0 0 0 3 (Parametercode: Drehrich- tung, Param.: dez 3 = hex 3)	C 4 0 0 0 0 1	Encoder gibt noch alte Rück- meldung aus
11	0600003	C 4 0 0 0 0 0 1	Parameterverarbeitung im Encoder läuft. Rückmeldung

12	0600003	C 6 0 0 0 0 0 3	Verarbeitung des Parameters im Encoder abgeschlossen, Encoder bleibt im Zustand "Parametrierung"
13	0 8 0 0 0 0 0 0 0 (Parametercode: Proset	C 6 0 0 0 0 0 3	Encoder gibt noch alte Rückmeldung aus
	Param.: dez 0 = hex 0)		
14	0800000	C 6 0 0 0 0 0 3	Parameterverarbeitung im Encoder läuft, noch alte Rückmeldung
15	0800000	C 8 0 0 0 0 0 0	Verarbeitung des Parameters im Encoder abgeschlossen, Encoder bleibt im Zustand "Parametrierung"
16	8000000	C 8 0 0 0 0 0 0	Gerätesteuerbefehl "Betrieb freigeben" vom Master an den Encoder, Encoder zeigt noch keine Reaktion
17	8000000	X X X X X X X X X (Istwert)	Encoder im Zustand "Betrieb"
18	00000000	X X X X X X X X (Istwert)	Betriebszustand von beiden Teilnehmern wieder erreicht

Der Presetwert (hier: "0") ist nun programmiert und kann durch folgende Anweisungen einmalig aufgerufen (initialisiert) werden:

1	00000000	X X X X X X X X (Positionsistwert)	Istwertausgabe vom Encoder
2	40000000	X X X X X X X X (Positionsistwert)	Master schickt Befehl an Encoder, Encoder
			zeigt noch keine Reaktion
3	40000000	0000000	Encoder sendet neu berechneten Positions-
			istwert
4	00000000	0000000	Betriebszustand von beiden Teilnehmern
			erreicht, Istwert wird ausgegeben (hier "0")

5.4 Herstellerspezifische Funktionen

Die FRABA INTERBUS Encoder bieten eine Vielzahl von herstellerspezifischen Funktionen, die im K3-Profil zwar vorgesehen sind, aber nicht vom Profil oder anderen Herstellern unterstützt werden.

5.4.1 FRABA Preset

Bei Setzen des Presetwertes im K3-Profil muss zunächst ein Presetwert gesetzt werden, dieser wird mit dem Befehl "Set-Nullpunktverschiebung" aktiviert. Allerdings kann jeder Presetwert nur einmal aktiviert werden, will man ihn ein zweites Mal aktivieren, so muss man den Wert zuvor neu setzen. Mit dem Kommando "FRABA-Preset" kann nun ein einmal gesetzter Presetwert beliebig oft aktiviert werden. Dabei ist zu beachten, dass wegen der Natur des INTERBUS (ein einmal von der SPS gesendetes Kommando wird immer wieder zyklisch über den Bus übertragen) nach dem Senden des Kommandos "FRABA Preset" ein anderes Kommando gesendet werden sollte, beispielsweise eine Freigabe.

5.4.2 Geschwindigkeitsmodus

Im Geschwindigkeitsmodus gibt der FRABA Winkelcodierer nicht länger seinen aktuellen Positionswert über den INTERBUS aus, sondern die momentane Winkelgeschwindigkeit in Umdrehungen pro Minute.

5.4.3 Auslesemodus

Im Auslesemodus können alle Parameter, die Register des INTERBUS-Chips Supi3-Opc und, sofern der Winkelcodierer mit einem Temperatursensor ausgerüstet ist, der Temperaturwert ausgelesen werden.

5.4.4 Nockenmodus

Der FRABA INTERBUS Winkelcodierer bietet zusätzlich integrierte Nockenfunktionen, bei denen außer dem Winkelcodierer und einem INTERBUS-Netz keine weiteren Komponenten zum Betrieb und zur Parametrierung des Nockenschaltwerkes notwendig sind.

Das Kommando, um den Encoder in den Nockenmodus zu versetzen, ist (hexadezimal) 2080000xh¹, wobei das x für das gewünschte Nockenprogramm steht. Es stehen standardmäßig 8 Programme (x von 1-8) mit jeweils 8 Nocken zur Verfügung. Mit dem Kommando 20800000h wird der Encoder zurück in den Positionsmodus geschaltet, womit er als normaler Standard-INTERBUS-Encoder den Positionswert ausgibt.

In jedem Nockenprogramm können (standardmäßig) bis zu 8 Nocken unabhängig voneinander aktiviert und deaktiviert werden, sowie die

Einschalt- und Abschaltwerte der Nocken parametriert werden. Zum Aktivieren bzw. Deaktivieren der Nocken dient der Befehl

2040xxxx, wobei xxxx der gewünschten Nockenkonfiguration entspricht. Dabei steht jede Stelle im Binärcode für eine Nocke, wenn also z.B. die Nocken 0,1,4 und 7 aktiviert sein sollen (d.h. abgefragt werden sollen) alle anderen Nocken deaktiviert, so würde das Kommando 20400093h, lauten. Zur Erläuterung: der Binärwert der letzten 2 Stellen des hexadezimalen Kommandos ist 1001 0011b, woran man erkennen kann, dass genau die Bits gesetzt sind, die den zu setzenden Nocken entsprechen.

Es besteht außerdem die Möglichkeit, die momentane Konfiguration der Nocken über den Bus ausgeben zu lassen, dazu dient das Kommando 20200000h. Als Antwort auf dieses Kommando gibt der Winkelcodierer über den Bus ein Ausgabewort aus, in dessen letzen 16 (binären) Stellen jeweils eine 1 gesetzt ist, sofern die zugehörige Nocke aktiviert ist, ansonsten wird eine Null ausgegeben.

Die Parametrierung der Werte, zwischen denen die Nocke gesetzt wird, erfolgt ebenfalls über ein Ausgabewort an den INTERBUS, welches sich aus dem Befehl (Einschaltwert: 010b, Ausschaltwert: 011b) aus der binär vierstelligen Nockenkennung (0-7 -> 0000b bis 0111b) sowie aus dem binär 25stelligem Positionswert besteht, an dem der Einschalt- bzw. Ausschaltvorgang erfolgen soll. Soll beispielsweise Nocke 3 zwischen einem Positions-Istwert von 15h und 213h aktiviert sein, so erfolgt die Parametrierung durch die in der Tabelle dargestellte Befehlsfolge:

¹ Hexadezimale Werte werden im folgenden mit einem h hinter dem Wert gekennzeichnet, binären Werten wird ein b angehängt.

Binärwert (Bit 31 = MSB zuerst)	Hex-Wert	Bedeutung
00100000100000000000000000000000000000	20800001h	Encoder vom Positionsausgabemodus in
		das Nockenprogramm 1 schalten, die fol-
		genden Befehle beziehen sich damit auf
		Nocken im Programm 1
010001100000000000000000000010101b	46000015h	Setze Einschaltwert von Nocke 3 auf 15h
01100110000000000000000000000000000000	66000213h	Setze Abschaltwert von Nocke 3 auf 213h
00100000010000000000000000000000000000	20400008h	Nocke 3 aktivieren und in diesem Fall alle
		anderen Nocken deaktivieren
		(sofern nicht schon vorher durchgeführt)
10000000000000000000000000000000000000	80000000h	Freigabe (Encoder von Parametrierung in
		Nockenmodus schalten)

Sobald eine Parametrierung erfolgt, wird der Encoder in den Parametriermodus versetzt, in welchem die über den Bus zugeschickten Kommandos entsprechend bestätigt werden. Dieser wird mit Freigabe (8000000h) beendet, so dass der Encoder wieder in den Nockenmodus versetzt wird. Zur Überprüfung der Ein- und Abschaltwerte können diese mit einem weiteren Kommando über den Bus ausgelesen werden.

Während sich der Encoder im Nockenmodus befindet, entsprechen die letzten 8 Stellen (Bit 0-7) den 8 Nocken. Befindet sich der Encoder beispielsweise im Bereich, in dem Nocke 5 eingeschaltet sein soll, und ist die Funktion der Nocke 5 aktiviert, so wird Bit 5 im Ausgabewort auf 1 gesetzt. Für nicht aktivierte oder nicht eingeschaltete Nocken wird eine Null im Ausgabewort ausgegeben.

Ein Fehler oder ein nicht als Nockenwert verwendbarer Ausgabewert (z.B. weil der Encoder gerade parametriert wird), wird durch eine 1 im Bit 31 (MSB) angezeigt. Zusätzlich besteht die Möglichkeit, gleichzeitig zu den Nocken einen Teil des momentanen Positionswertes anzuzeigen. Dafür können jedoch nur die Bits 8 bis 24 verwendet werden. Um eine größtmögliche Flexibilität für den Kunden zu gewährleisten, kann der Positionswert innerhalb dieser 17 Bit um bis zu 25 Bit verschoben werden, so dass nach Wahl des Kunden entweder die letzten 4 hexadezimalen Stellen des Positions-wertes (shift_iw auf 0 setzen) oder die ersten 4 Stellen (shift_iw auf 8 setzen) angezeigt werden können. Wird shift iw auf 25 gesetzt, so werden nur die Nocken und kein Positionswert ausgegeben. Die Variable shift_iw kann über den Bus mit dem Kommando 201000xx gesetzt werden und mit dem Kommando 20200040h ausgelesen werden.

Eine Umschaltung zwischen den verschiedenen Nockenprogrammen ist jederzeit durch Senden des entsprechenden Kommandos möglich, dabei geht die Parametrierung der Nocken im Modus, der verlassen wird, nicht verloren. Die Werte des neuen Programms werden aus dem EEPROM ausgelesen, sofern zuvor eine Parametrierung erfolgt war.

6 Technische Daten

6.1 Elektrische Daten

Versorgungsspannung	10 - 30 V DC (absolute Grenzwerte) *
Leistungsaufnahme	max. 3,5 Watt
EMV	EN 61000-6-2 (Störaussendung),
	EN 61000-6-4 (Störfestigkeit)
Schnittstelle	Line-Driver nach RS 485
	galvanisch getrennt durch Optokoppler
Baudrate	500 kBaud oder 2MBaud
Teilungsgenauigkeit	± 1/2 LSB
Schrittfrequenz LSB	max. 800kHz (gültiger Codewert)
Lebensdauer elektrisch	> 10 ⁵ h
Anschluss	9 pol. Rundstecker

* Versorgungsspannung nach EN 50 178 (Schutzkleinspannung)

6.2 Mechanische Daten

Gehäuse	Aluminium, optional Edelstahl
Lebensdauer	Abhängig von Ausführung, Wellenbelastung – siehe Tabelle
Maximale Wellenbelastung	Axial 40 N, radial 110 N
Trägheitsmoment des Rotors	\leq 30 gcm ²
Reibungsmoment	≤ 3 Ncm (Ausführungen ohne Wellendichtring)
Drehzahl (Dauerbetrieb)	max. 12.000 min ⁻¹
Schockfestigkeit (EN 60068-2-27)	≤ 30 g (Halbsinus, 11 ms)
Dauerschock (EN 60028-2-29)	≤ 10 g (Halbsinus, 16 ms)
Schwingfestigkeit (EN 60068-2-6)	≤ 10 g (10 Hz 1000 Hz)
Masse (Ausführung Standard)	Singleturn: ca. 500 g
	Multiturn: ca. 560 g

Flansch	Synchro (S)	Klemm (C)	Hohlwelle (B)
Wellendurchmesser	6 mm	10 mm	10 mm	15 mm
Wellenlänge	10 mm	20mm	20 mm	-
Welleneindringtiefe min. / max.	-	-	-	15 mm / 30 mm

6.2.1 Minimale Lebensdauer mechanisch

Flanschbaugruppe	Lebensdauer in ?	10 ⁸ Umdrehungen	bei F _a / F _r
	40 N / 60 N	40 N / 80 N	40 N / 110 N
C10 (Klemmflansch 10 x 20)	247	104	40
S10 (Synchroflansch 10 x 20)	262	110	42
S6 (Synchroflansch 6 x 10) ohne Wellendichtung	822	347	133

S6 (Synchroflansch 6 x 10) mit Wellendichtung: maximal 20 N axial, 80 N radial

6.3 Umgebungsbedingungen

Arbeitstemperaturbereich	- 0 +60°C
Lagertemperaturbereich	- 40 + 85 °C
Relative Luftfeuchtigkeit	98 % (ohne Betauung)
Schutzart (EN 60529)	Gehäuseseite: IP 65
	Wellenseite: IP 64 (optional mit Wellendichtring: IP66)

7 Maßzeichnungen

Mechanische Zeichnungen

7.1 Synchroflansch

Zwei Ausführungen lieferbar

7.2 Klemmflansch

8 Ausführungen / Bestellbezeichnung

Bezeichnung	Typensch	lüsse								
Optocode	OCD - IB	A1	- B			_			PRI	
Schnittstelle Interbus	IB									
Version		A1								
Code	Binär		В							
Bits für Umdrehungen	Single-Turn			00						
	Multi-Turn			12						
Schritte pro Umdrehung	4.096				12					
	8.192				13					
Flansch	Klemm-Flar	nsch				С				
	Synchro-Fla	ansch				S				
	Sackloch-H	ohlwel	le			В				
Welle	ø10 mm						10			
	ø06 mm						06			
	ø15 mm (ու	ur für ⊢	lohlwe	elle)			15			
Mechanische Optionen	Ohne							0		
	Wellendicht	ung						S		
	Kundenspe	zifisch						С		
Anschlusstechnik	Stecker rad	ial							PRI	
Optionen										

Standard = fett, weitere Ausführungen auf Anfrage

8.1 Zubehör und Dokumentation

Bezeichnung		Тур
Gegenstecker	9 poliger Rundstecker, Stifteinsatz	0SG-S
Gegenstecker	9 poliger Rundstecker, Buchseneinsatz	0SG-B
Wellenkupplung **	Bohrung: 10 mm	GS 10
	Bohrung: 6 mm	GS 06
Spannscheiben **	4 Stück / AWC	SP 15
Spannhalbringe **	2 Stück / AWC	SP H
Reduzierring ***	15 mm auf 12 mm	RR12
Reduzierring ***	15 mm auf 10 mm	RR10
Reduzierring ***	15 mm auf 8 mm	RR8
Benutzerhandbuch *	Installations- und Konfigurationsanleitung für Interbus, deutsch	UMD-IB
Benutzerhandbuch *	Installations- und Konfigurationsanleitung für Interbus, englisch	UME-IB
Parametrieroberfläche*	für Phoenix PC-Masterkarten	DK-IB

- * Besuchen Sie unsere Homepage <u>www.posital.de</u>. Hier stehen die Dateien zum kostenlosen Download zur Verfügung.
- ** Für Hohlwellenausführungen nicht erforderlich.
- *** Nur für Hohlwellenausführungen

INTERBUS PROFIL UND HERSTELLERSPEZIFISCHE KOMMANDOS

9 Anhang

9.1 Profil Funktionen															E	Binä	àr																Hex
Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Steuer- und Datenbits	15	14	13	12	11	10	9	MSB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_ C	LOD	Anhang
Normaler Busbetrieb	0	0	0	0	0	0	0	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	x	х	0xxxxxx
Freigabe	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	80000000
Presetwert aktivieren	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4000000
Unterparameter Schritte	0	0	0	0	0	0	1											Ра	ram	nete	rdat	en											02xxxxxx
Unterparam. Umdrehung	0	0	0	0	0	1	0											Ра	ram	nete	rdat	en											04xxxxxx
Zählrichtung	0	0	0	0	0	1	1											Ра	ram	nete	rdat	en											06xxxxxx
Presetwert eingeben	0	0	0	0	1	0	0											Ра	ram	nete	rdat	en											08xxxxxx
Nullpunktverschiebung	0	0	0	0	1	0	1											Ра	ram	nete	rdat	en											0Axxxxxx
Setzen Defaultparameter	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0E000000
9.2 Herstellerspezifische Funktionen													10	10	1	Binä	ir		10			10			_		_						Hex
Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Steuer- und Datenbits	15	14	13	12	11	10	9	MSB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LSB	
FRABA Preset	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6000000

0 0 20400001 Geschwindigkeitsmodus 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Positionsmodus 1 0 20400000

HERSTELLERSPEZIFISCHE KOMMANDOS

Herstellerspezifische Funk-

tionen (Fortsetzung)																Bin	är																Hex
Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Steuer- und Datenbits	15	14	13	12	11	10	9	MSB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LSB	
Daten auslesen: Seriennum.	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20210000
Subparameter Schritte	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	20210001
Subparameter Umdrehung	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	20210002
Zählrichtung	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	20210003
Preset	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	20210004
Nullpunktverschiebung	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	20210005
Preset Flag	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	20210006
Software Version	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	20210007
Betriebszeit [10 min]	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	20210008
Startupmode 1)	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	20210009
Flag f. Schritt-1 / ST / MT $^{2)}$	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	2021000A
Temperatur [Celsius/10] 3)	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	2021000C
OPC-register	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0		Adre	esse	e	1	1	0	1	202100xD
Daten auslesen beenden	х	х	х	х	х	х	х	х	х	х	х	х	x	х	x	0	х	х	x	х	х	х	х	x	х	х	х	х	х	х	х	x	xx0xxxxx

¹⁾ Encoderantwort: K2 = 0h, K3 = 1h, Geschwindigkeitsmodus = 2h, Nockenprogramm 1 bis 8 = 3h bis 10h

²⁾ = Encoderantwort:

Bit 0 = 0: Normal Modus

= 1: Schritte-1 Modus (100% kompatibel zu früheren Standard-INTERBUS-Encoder)

Bit 1 = 0: Single-Turn-Encoder

= 1: Multi-Turn-Encoder

³⁾ als signed int

ANTWORT UND FEHLERCODES

9.3 Fehlercode																Bir	när																Hex
Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Steuer- und Datenbits	15	14	13	12	11	10	9	MSB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LSB	
Kein gültiger Positionswert	1	0	0	x	х	x	x	x	x	х	x	х	х	x	x	x	х	x	x	х	х	x	х	x	х	x	x	x	х	x	x	x	8xxxxxxx
Falsche Parameterdaten	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	82000000
Unbekannte Parameternummer	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	84000000
Parameter verloren	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	86000000
Unbekannter Parameter (im Ausle-																																	
semodus)	1 0 1 0 1 0 Falscher Parameter																A4xxxxx																
Herstellerspezifische Fehlercodes	1 0 1 0 1 0 Falscher Parameter 1 0 0 1 1 0															x	980000xx																
9.4 Diverse Rückgabecodes																Bir	när																Hex
Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Steuer- und Datenbits	15	14	13	12	11	10	9	MSB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LSB	
Busbetrieb	0	0	0	0	0	0	0											P	osit	ions	swe	ert											0xxxxxxx
Prozessparameter	1	1	0	0	0	0	0	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	x	Cxxxxxx
Parameterantwort (ungeprüft)	1	1	0		Ρ	Nr.												Ра	Iran	nete	erw	ert											Cxxxxxx
Auslesemodus oder Autotest	1	0	1	0	0	0	0											A	usl	ese	we	rt											Axxxxxx

INTERBUS NOCKEN KOMMANDOWORTE

9.5 Nocken Funktionen																Bin	är																Hex
Bit Position	31	30	29	28	27 2	26	25 2	24 2	23 2	22 2	21 2	20 1	19 ⁻	18	17	16 ⁻	15	14 ´	3	12	11	10	9	8	7	6	5	4	3	2	1	0	
Steuer- und Datenbits	15	14	13	12	11 -	10	9	MSB	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LSB	
Busbetrieb	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	х	x	x	x	х	x	x	х	0000xxxx
Busstart / Ende Nockenparametriermodus	1	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8000000
Setze Encoder in Nockenmodus, Pro-																																	
grammnummer x	0	0	1	0	0	0	0	0	1	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	х	х	x	х	2080000x
Setze Encoder in Positionsmodus	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20800000
Setze Nockenkonfiguration	0	0	1	0	0	0	0	0	0	1	0 (0	0	0	0	0	E	Bit x:	=1:	akt	ivie	ert N	locl	ke;	Bit	x=0): d	eak	tivie	ert N	lock	e	2040xxxx
Setze shift_iw	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		shi	ft_v	/alu	е	201000xx
Setze Startwert für eine Nocke	0	1	0	No	cke	n-N	lr.			•							S	tart	Po	siti	ons	swe	ert				-						4xxxxxxx
Setze Endwert für eine Nocke	0	1	1	No	cke	n-N	lr.										Er	nde	Pc	ositi	on	swe	ert										6xxxxxx
Nockenkonfiguration auslesen	0	0	1	0	0	0	0 (0	0	0	1 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20200000
Startwert für Nocke auslesen	0	0	1	0	0	0	0 0	0	0	0	1 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	N	lock	ken-	Nr.	2020001x
Endwert für Nocke auslesen	0	0	1	0	0	0	0 0	0	0	0	1 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	N	ock	en-	-Nr.	2020002x
shift_iw-Wert auslesen	0	0	1	0	0	0	0 (0	0	0	1 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	20200030
9.6 Fehlercodes																Bin	när																Hex
Bit Position	31	30	29	28	27 2	26	25 2	24 2	23 2	22 2	21 2	20 1	19 ⁻	18	17	16 ⁻	15	14 <i>°</i>	3	12	11	10	9	8	7	6	5	4	3	2	1	0	
Steuer- und Datenbits	15	14	13	12	11	10	9	MSB	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LSB	
Kein gültiger Nockenwert ausgegeben	1	0	0	х	х	х	x	x	x	х	x	x	х	х	х	х	х	x	x	х	х	х	х	х	х	х	x	x	x	x	x	х	8xxxxxxx
Falsche Parameterdaten	1	0	0	0	0	0	1 (0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8200000
Falsches Kommando	1	0	0	0	0	1	0	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8400000
Parameter verloren	1	0	0	0	0	1	1 (0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8600000
Herstellerspezifischer Fehlercode	1	0	0	1	1	0	0	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	х	х	x	x	х	х	x	х	980000xx
Start/Endwert größer als max. Positionswert	1	0	0	1	1	0	0	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	98000004